SummerSoC 2019

Quantum Computing: A Brief Introduction

Frank Leymann

Institute of Architecture of Application Systems (IAAS) University of Stuttgart

Agenda

Basics in Quantum Physics The Qbit **Quantum Register Operators on Quantum Registers Exponential Speedup** Search & Complexity Cracking Keys Encryption **Error Correction** NISQ Conclusion

Agenda

Basics in Quantum Physics The Qbit **Quantum Register Operators on Quantum Registers Exponential Speedup** Search & Complexity Cracking Keys Encryption **Error Correction** NISQ Conclusion

Heisenberg's Uncertainty Principle

$$\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$$

Schrödinger's Cat

Measuring delivers the result - it destroys superposition

Dilbert Version

http://dilbert.com/strip/2012-04-17

Agenda

Basics in Quantum Physics The Qbit **Quantum Register Operators on Quantum Registers Exponential Speedup** Search & Complexity Cracking Keys Encryption **Error Correction** NISQ Conclusion

Qbit

Quantum bit (*Qbit*) is in the two classical states $|0\rangle$ or $|1\rangle$ at the same time (!): *Superposition* \rightarrow not quite right: see refinement a bit later

State of a qbit is

$$\alpha |0\rangle + \beta |1\rangle$$

ie a linear combination of $|0\rangle$ and $|1\rangle$
 $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$.
Ie a quantum state is a vector
on the unit circle S¹.
 $\{|0\rangle, |1\rangle\}$ is a basis of the state space

$$\left| 0 \right\rangle = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \qquad \left| 1 \right\rangle = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

Spherical Coordinates

For each Qbit $|\psi\rangle$ there is a $\theta \in [0, \pi]$ and a $\varrho \in [0, 2\pi]$, such that

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\rho}\sin\frac{\theta}{2}|1\rangle$$

This is a bijective map of S³ (subset of 4-dimensional space) onto S² (subset of 3-dimensional space): $\mathbb{C}^2 = \mathbb{R}^4 \supset S^3 \mapsto \mathbb{R}^2 \mapsto S^2 \subset \mathbb{R}^3$

Bloch Sphere

- $\theta = 0 \Rightarrow \psi = |0\rangle$
 - $\theta = \pi \Rightarrow \psi = |1\rangle$
 - $\theta = \pi/2 \land \varrho = 0 \Rightarrow$ $\psi = 1/\sqrt{2} \cdot (|0\rangle + |1\rangle) =: |+\rangle$

•
$$\theta = \pi/2 \land \varrho = \pi \Rightarrow$$

 $\psi = 1/\sqrt{2} \cdot (|0\rangle - |1\rangle) =: |-\rangle$

- $\theta = \pi/2 \land \varrho = \pi/2 \Rightarrow$ $\psi = 1/\sqrt{2} \cdot (|0\rangle + i \cdot |1\rangle) =: |i\rangle$
- $\theta = \pi/2 \land \varrho = 3\pi/2 \Rightarrow$ $\psi = 1/\sqrt{2} \cdot (|0\rangle - i \cdot |1\rangle) =: |-i\rangle$

Intuition of a Qbit

A bit is either "0" or "1" \rightarrow Two possible values

A qbit is an arbitrary point on the Bloch Sphere → Uncountably infinit possible values

Measurement

Classical bits can be read \Rightarrow You can find out the exact state (value 0 or 1) of the bit

Can't be done for qbits, their state is the superposition $\alpha |0\rangle + \beta |1\rangle$

Reading a qbit means measurement, and measuring destroys superposition!

Corollary: A qbit can be read only once. Measuring $|x\rangle = \alpha |0\rangle + \beta |1\rangle$ destroys superposition and results in state $|0\rangle$ with probability $|\alpha|^2$ state $|1\rangle$ with probability $|\beta|^2$ -1

Measurement ≡ Random Experiment

© Frank Leymann

Single Computation Steps

A *computation step* creates from a state (a vector of length "1") a new state (again a vector of length "1").

A computation step is a linear map preserving lengths, thus, a unitary map.

A computation step is represented by a unitary linear map

Principle of a Quantum Algorithm

Example: Coin Flipping

We want an algorithm, that results in $|0\rangle$ with probability 1/2,

and that results in $|1\rangle$ with probability 1/2

1.
$$|x\rangle \leftarrow |0\rangle$$

2. $|x\rangle \leftarrow H|x\rangle$
3. Measure $|x\rangle$

Step 1: Qbit $|x\rangle$ is initialized in state $|0\rangle$ Step 2: Hadamard transformation H is applied to $|x\rangle$ thus, $|x\rangle$ transitions into state $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ Step 3: Measuring gives the desired result

The algorithm produces a completely random bit, i.e. a random number: Classical algorithms can only produce pseudo random numbers!

© Frank Leymann

Impossible Algorithm: No-Cloning Theorem

There can be <u>no</u> algorithm, which can copy <u>each</u> arbitrary state of a system.

Formalization:

There exists no unitary transformation $U: H \rightarrow H$

such that for a chosen $|c\rangle \in H$ (the state receiving the copy)

and an arbitrary state $|\psi\rangle \in H$ holds: $(id \otimes U)(|\psi\rangle \otimes |c\rangle) = |\psi\rangle \otimes |\psi\rangle$

Agenda

Basics in Quantum Physics

The Qbit

Quantum Register

Operators on Quantum Registers

Exponential Speedup

Search & Complexity

Cracking Keys

Encryption

Error Correction

NISQ

Conclusion

© Frank Leymann

Quantum Register: Informally

Quantum *register* is a series of n qbits

Classical register is a series of n bits

Quantum register with n qbits is the superposition of the corresponding 2^n states $|00...00\rangle$, $|00...01\rangle$, $|00...10\rangle$,..., $|11...11\rangle$

Classical register with n bit $\rightarrow 1$ value at a time

Quantum register with n bit $\rightarrow 2^n$ value at the <u>same</u> time E.g. $2^{50} = (2^{10})^5 > (10^3)^5 = 10^{15} (\triangleq \text{Peta...})$

Quantum computer manipulates 2ⁿ values at the same time (*Quantum Parallelism*)

© Frank Leymann

Quantum Register: Hardware

https://www.research.ibm.com/ibm-q/technology/devices/images/5qubit.png

https://www.theregister.co.uk/2017/03/06/ ibm_has_cloud_access_to_quantum_computer_400_times_smaller __than_dwave_system/

2-Qbit Quantum Register: Formally $R = |x_1\rangle \otimes |x_0\rangle$ This is a product! $|x_0\rangle = \gamma_0 |0\rangle + \gamma_1 |1\rangle$ $|x_1\rangle = \beta_0 |0\rangle + \beta_1 |1\rangle$

$$R = |x_1\rangle \otimes |x_0\rangle$$

= $(\beta_0|0\rangle + \beta_1|1\rangle) \cdot (\gamma_0|0\rangle + \gamma_1|1\rangle)$
= $\beta_0\gamma_0|0\rangle|0\rangle + \beta_0\gamma_1|0\rangle|1\rangle + \beta_1\gamma_0|1\rangle|0\rangle + \beta_1\gamma_1|1\rangle|1\rangle$

With
$$\alpha_{ij} = \beta_i \gamma_j$$
 $R = \alpha_{00} |0\rangle |0\rangle + \alpha_{01} |0\rangle |1\rangle + \alpha_{10} |1\rangle |0\rangle + \alpha_{11} |1\rangle |1\rangle$
= $\alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$

© Frank Leymann

Quantum Register

Let ₂H be the **C**-vector space spanned by $\{|0\rangle, |1\rangle\}$

Then,
$$|\phi\rangle \in {}_{2}H^{\otimes n} \coloneqq {}_{2}H \otimes \cdots \otimes {}_{2}H$$
 with $|||\phi\rangle ||=1$ is called
state of the n-qbit-quantum register $|x_{n-1}\rangle \otimes \cdots \otimes |x_{0}\rangle$

$$\mathbb{C}^{2^n} = {}_2 H^{\otimes n}$$

Separable & Entangled States

 $|\phi\rangle \in H_1 \otimes \cdots \otimes H_n$ is called *separable* : \Leftrightarrow $|\phi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle$ with $|\psi_i\rangle \in H_i$, $1 \le i \le n$

 $|\phi\rangle$ is called *entangled* : $\Leftrightarrow |\phi\rangle$ is not separable

Entanglement

Measuring the first qbit results in $|0\rangle$ with probability 1. The second qbit will be measured as $|0\rangle$ or $|1\rangle$ with probability 1/2 Measuring the first qbit results in $|0\rangle$ or $|1\rangle$ with equal probability. After that the value of the second qbit is already determined!

> Einstein–Podolsky–Rosen Paradox (EPR Paradox)

Intuition: Entanglement as Global Phenomenon

Manipulation of a single Qbit $|x_i\rangle$ of a quantum register $~|x_1\rangle\otimes\ldots\otimes|x_n\rangle$ has impact on all qbits of the quantum register

W

Entanglement: Importance

Entanglement is unique for quantum computing!

Every computation that is <u>not</u> involving entangled qbits, can be performed with the same efficiency with classical computations.

Every quantum algorithm showing exponential speedup compared to classical algorithms, must exploit entanglement.

(Jozsa / Linden, 2003)

Agenda

Basics in Quantum Physics The Qbit **Quantum Register Operators on Quantum Registers Exponential Speedup** Search & Complexity Cracking Keys Encryption **Error Correction** NISQ Conclusion

1-Qbit Operators

A unitary map $f : {}_{2}H \rightarrow {}_{2}H$ is called *1-qbit operator* (...*Gate*)

Quantum NOT, Bit FlipPhase Flip
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

X, Y, Z are called *Pauli-Matrices*

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}$$

Hadamard Matrix

Phase Matrix

© Frank Leymann

 $\pi/8 Matrix$ (yeah, strange: $\pi/8 \text{ vs } \pi/4$; pure historical reasons!) 27

Geometry of Exponential Pauli Operators

 $R_{y}(\theta)|\psi\rangle$ ψ W W $R_{y}(\theta)$ is rotation by θ around y-axis

around z-axis

AAS

1-Qbit Operators: Decomposition

A set \mathcal{U} of 1-qbit operators is called *universal* : \Leftrightarrow Each 1-qbit operator is a finite combination of operators from \mathcal{U} Let U be a 1-qbit operator. Then: Z-Y Decomposition $\exists \alpha, \beta, \gamma, \delta \in \mathbb{R} : U = e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta)$ X-Y Decomposition $\exists \alpha, \beta, \gamma, \delta \in \mathbb{R} : U = e^{i\alpha} R_x(\beta) R_y(\gamma) R_x(\delta)$

Every 1-qbit operator is a composition of rotations on the Bloch Sphere

The set of Pauli-Operators are universal for 1-qbit operators

© Frank Leymann

Operators on Quantum Registers

Let n>1, $_{2}H^{\otimes n} = _{2}H \otimes \cdots \otimes _{2}H$

A unitary map $f: {}_{_{2}}H^{\otimes n} \rightarrow {}_{_{2}}H^{\otimes n}$ is called *n-qbit operator* (or *quantum-register-operator* oder *quantum gate*)

A set \mathcal{U} of quantum-register-operators is called *universal* : \Leftrightarrow Every quantum-register-operator is a finite combination of operators from \mathcal{U}

Two-Level Operators

Let $f: V \to V$ be a unitary map

f is called *two-level* : $\Leftrightarrow \exists U \in \mathbb{C}^{2 \times 2}$: M(f) = and U is unitary

> A two-level operator modifies at most two adjacent qbits of a quantum register

© Frank Leymann

I

Decomposition into Two-Level Operators

The set of all two-level operators on quantum registers is universal.

Problem: There is an infinite number of two-level operators. But the set of universal operators should be "small"!

Two-Level Operators: Hardware

Two-level operator requires connection between the two qbits

CNOT: $H \otimes H \rightarrow H \otimes H$

 \oplus : {0,1} \rightarrow {0,1} with $x \oplus y \mapsto x+y \mod 2$

I.e. if x=1 then y will be negated; otherwise, y is not changed at all (x is called *control*-qbit, y is called *target*-qbit)

CNOT and Entanglement

$$\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes |0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) \text{ is separable}$$

$$CNOT\left(\frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)\right) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \text{ is entangled}$$

CNOT can transform separable states into entangled states

$$CNOT\left(\frac{1}{\sqrt{2}}(\left|00\right\rangle + \left|11\right\rangle)\right) = \frac{1}{\sqrt{2}}(\left|00\right\rangle + \left|10\right\rangle)$$

CNOT can transform entangled states into separable states

Entanglement: Hardware

Immediate entanglement of two qbits requires connection between them

 \Rightarrow <u>Connectivity</u> of a quantum chip is important

Decomposition into CNOT and 1-Qbit Operators

The set of 1-qbit Operators and CNOT is universal.

Reminder: The Pauli-Matrices is a set of universal 1-qbit operators

For an n qbit quantum register it is $d=2^n$. The number of required 1-qbit operators and CNOTs is $O(n^2 \cdot 4^n)$

Problem: This is not an efficient implementation of quantum register operators

© Frank Leymann

Approximation

Using {H, S, T, CNOT}, each operator U on a quantum register can be <u>approximated</u> with arbitrary precision.

Solovay-Kitaev Theorem (1997)

Assumption: This implementation is acceptable.

Depth of an Algorithm (a.k.a. Quantum Circuit)

The *depth* of a quantum circuit is the number of layers of 1- or 2-qbit gates that operate in parallel on disjoint qbits.

The *breadth* of a quantum circuit is the number of manipulated qbits.

НAS

Examples

Noise

Quantum operators are typically implemented by rotation operators

E.g.:
$$H = i \cdot R_z(\pi) \cdot R_y\left(-\frac{\pi}{2}\right) \cdot R_z(0)$$

Typically, these are rotations by non-rational angels

Such rotations can<u>not</u> be performed precisely

 \Rightarrow Quantum operators are typically *noisy* (i.e. erroneous)

Qbits are typically interacting with their environment, i.e. they are unstable

 \Rightarrow Qbits "decay" over time (*decoherence*)

⇒ A quantum algorithm cannot per performed for an arbitrary long time, i.e. it can<u>not</u> contain arbitrary many steps

Noisy Algorithms

Rough estimation of the "size" of a quantum algorithm that can be performed without errors:

$$wd \ll \frac{1}{\varepsilon}$$

w: width d: depth ε: error rate

But: See "Error Correction" later!

Consequences

Deep quantum algorithms \Rightarrow few qbits \Rightarrow efficient classical simulation possible

Shallow quantum algorithms \Rightarrow many qbits \Rightarrow potential for quantum advantage

See NISQ (Noisy Intermediate Scale Quantencomputing) later

Agenda

Basics in Quantum Physics The Qbit **Quantum Register Operators on Quantum Registers Exponential Speedup** Search & Complexity Cracking Keys Encryption **Error Correction** NISQ Conclusion

Problem $f: \{0,1\}^n \to \{0,1\}$

f constant : $\Leftrightarrow \forall x, y \in \{0,1\}^n : f(x) = f(y)$

f balanced : \Leftrightarrow card $f^{-1}(0) = 2^{n-1} = \operatorname{card} f^{-1}(1)$

(f maps half of the domain to 0, the other half to 1)

Problem: Determine with a minimum number of evaluations of f whether f is constant or balanced!

Classical Case

In the classical case, even after having read half (i.e. 2^{n-1}) values it's not clear whether f is constant or balanced

Example: All values read are 0, but the next value (i.e. the $(2^{n-1}+1)$ -th value) is $1 \Rightarrow f$ balanciert; or the next value is $0 \Rightarrow f$ konstant.

I.e. a classical (deterministic) algorithm requires (worst case) 2ⁿ⁻¹+1 evaluations of f

"Oracle"

$$U_{f}: {}_{2}H^{\otimes n} \otimes {}_{2}H \to {}_{2}H^{\otimes n} \otimes {}_{2}H$$
$$|x, y > \mapsto |x, y \oplus f(x) >$$

 $(|x\rangle \text{ is an n-Qbit-Quatum Register})$

 $U_{\rm f}$ is unitary

Algorithm of Deutsch-Jozsa

Step 1: Initialize the register $|x\rangle|y\rangle \leftarrow |0\rangle^{\otimes n}|1\rangle$

Step 2: Apply the Hadamard Transformation $|x\rangle|y\rangle \leftarrow H^{\otimes (n+1)} (|0\rangle^{\otimes n}|1\rangle)$

Step 3: Evaluate f $|x\rangle|y\rangle \leftarrow U_f(|x\rangle|y\rangle)$

U_f will be executed <u>exactly once</u>!

Step 4: Apply the Hadamard Transformation $|x\rangle \leftarrow H^{\otimes n} |x\rangle$

Step 5: Measure $|x\rangle = |0\cdots0\rangle \Rightarrow$ f is constant $|x\rangle \neq |0\cdots0\rangle \Rightarrow$ f is balanced

Meaning

The algorithm evaluates f exactly once!

In the classical case, f has to be evaluated (worst case) 2ⁿ⁻¹+1 times!

The quantum algorithm of Deutsch-Jozsa results in an exponential speedup!

Quantum Parallelism

 $U_{f}\left(H\left(\left|0\right\rangle^{\otimes n}\right)\left|0\right\rangle\right) = \frac{1}{\sqrt{N}}\sum_{x=0}^{N-1}\left|x\right\rangle\left|f(x)\right\rangle$

This is "quantum parallelism"

Agenda

Basics in Quantum Physics The Qbit **Quantum Register Operators on Quantum Registers Exponential Speedup Search & Complexity** Cracking Keys Encryption **Error Correction** NISQ Conclusion

Algorithm of Grover

We want to find out to whom a certain phone number belongs. Alphabetic order of phone book doesn't help!

Classical unstructured search is O(N)

There is a quantum algorithm that solves the problem in

$$G(N) = \frac{\pi}{4}\sqrt{N} = O\left(\sqrt{N}\right)$$

 \Rightarrow Quantum search results in quadratic speedup!

Application

Quantum search can speed-up (selective*) NP-problems

"Just" list all possible solutions and build a "database" out of them

Then use Grover algorithm to determine in $O(\sqrt{N})$ the solution

(*) You can define an oracle function for the problem (which can be done for cracking keys, traveling salesman,...)

Bounded Error Quantum Polynomial Time (BQP)

A problem is *Bounded Error Quantum Polynomial time* (BQP) if it can be solved on a quantum computer with error probability $\leq \frac{1}{2} - \epsilon$

BQP is for quantum computing what P is for classical computing!

- Let A be a BQP algorithm
- Let A' be the following algorithm:
 - A is repeated N times
 - The result with highest frequency will be output

Chernoff Bound

The probability to output the correct result increases exponentially with the number N of repetitions

$$P(\text{wrong majority}) \leq e^{-2N\varepsilon^2}$$

(Chernoff Bound)

Success Amplification

Let ω be the maximal probability to accept a wrong result.

After
$$N \ge \frac{1}{2\varepsilon^2} \ln \frac{1}{\omega}$$
 repetitions of a BQP algorithm
the result is correct with probability $1 - \omega$

<u>Example</u>: $\epsilon = 1/4$, $\omega = 1/1000 \Rightarrow N = 56$ \Rightarrow After 56 repetitions the result is correct with probability 99.99%

Agenda

Basics in Quantum Physics The Qbit **Quantum Register Operators on Quantum Registers Exponential Speedup** Search & Complexity **Cracking Keys** Encryption **Error Correction** NISQ Conclusion

Prime Factorization

Every number $n \in \mathbb{N}$ can be uniquely written as product of prime numbers:

$$\forall n \in \mathbb{N} \exists p_1, \dots, p_{k(n)} \in \mathbb{P} \exists i_1, \dots, i_{k(n)} \in \mathbb{N} : n = p_1^{i_1} \cdot \dots \cdot p_{k(n)}^{i_{k(n)}}$$

with $i_1, \ldots, i_{k(n)} > 0$, $p_i \neq p_j$ for $i \neq j$ and **P** is set of all prime numbers

If you need m bits to represent $n \in \mathbb{N}$ as binar number, then the best classical algorithm for factorization of n requires the runtime

$$\Omega\left(2^{\sqrt[3]{m}}\right)$$

Periodic Functions

 $f: \mathbb{N}_0 \to \mathbb{N}_0$ is called *periodic* : $\Leftrightarrow \exists k \in \mathbb{N} \forall x \in \mathbb{N}_0 : f(x) = f(x+k)$

 $k \in \mathbb{N}$ is called *period* of $f :\Leftrightarrow k$ is minimal I.e. if f(x+k') = f(x) for k' then k'>k

Example: Define $f(x) = 2^x \mod 5$

$$f(4+x) = 2^4 \cdot 2^x \mod 5 = 1 \cdot 2^x \mod 5 = f(x)$$

 \Rightarrow f has period 4

Now: chose 0 < a < n and define $f(x) := a^x \mod n$

© Frank Leymann

Shor's Algorithm

- If you know the period...
 - …you'll find a proper divisor within k runs with probability ≥(1 - 1/2^k)
- Overall runtime is O((log n)⁴)

Determining the spectrum of a function is called *Fourier-Transformation*

Discrete Fourier-Transformation

Often, the closed-form expression of a function f is not known, but only its values $f(t_0), \dots, f(t_{N-1})$ at sampling points t_0, \dots, t_{N-1}

Then, the Fourier-coefficients
$$c_k \approx \frac{1}{N} \sum_{n=0}^{N-1} f_n \cdot \omega_N^{k \cdot n}$$

with equidistant sampling point $t_n = \frac{2\pi n}{N}$, $0 \le n \le N-1$,

with $\omega_N^k = e^{\frac{2\pi i}{N} \cdot k}$ (complex *N*-th root of unity) and f(t_n)=f_n

Quantum Fourier Transformation

$$QFT_N = \left| \begin{array}{ccccc} 1 & \boldsymbol{\omega}_N & \boldsymbol{\omega}_N^2 & \cdots & \boldsymbol{\omega}_N^{N-1} \\ 1 & \boldsymbol{\omega}_N^2 & \boldsymbol{\omega}_N^{2\cdot 2} & \cdots & \boldsymbol{\omega}_N^{2\cdot (N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \boldsymbol{\omega}_N^{N-1} & \boldsymbol{\omega}_N^{2\cdot (N-1)} & \cdots & \boldsymbol{\omega}_N^{(N-1)\cdot (N-1)} \end{array} \right|$$

$$\begin{pmatrix} c_{0} \\ c_{1} \\ c_{2} \\ \vdots \\ c_{N-1} \end{pmatrix} = \frac{1}{N} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_{N} & \omega_{N}^{2} & \cdots & \omega_{N}^{N-1} \\ 1 & \omega_{N}^{2} & \omega_{N}^{2,2} & \cdots & \omega_{N}^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_{N}^{N-1} & \omega_{N}^{2(N-1)} & \cdots & \omega_{N}^{(N-1)(N-1)} \end{pmatrix} \cdot \begin{pmatrix} f_{0} \\ f_{1} \\ f_{2} \\ \vdots \\ f_{N-1} \end{pmatrix}$$

 \Rightarrow Fourier-Transformation becomes matrix multiplication!

Shor Algorithm: Details

Step 1: Initialize Qbit-Register $R = |a\rangle |b\rangle \leftarrow |0...0\rangle |0...0\rangle$ Step 2: Apply Hadamard Transformation to la> $R \leftarrow H^{\otimes n} \otimes I(|0\rangle|0\rangle) = \frac{1}{\sqrt{N}} \sum_{n=1}^{N-1} |x\rangle|0\rangle$ Quantum Step 3: Apply Oracle Function Part $R \leftarrow U_f(R) = \frac{1}{\sqrt{N}} \sum_{n=1}^{N-1} |x\rangle |f(x)\rangle$ Step 4: Apply Quanten Fourier Transformation to la> $|a\rangle \leftarrow \operatorname{QFT}_{N}(|a\rangle)$ Step 5: $y \leftarrow$ Measure la> Step 6: Expand y as "Continued Fraction" $[y_0;y_1,\ldots,y_n]$ Classical Step 7: p \leftarrow Determine p from convergents^(*) [y₀;y₁,...,y_k], k \le n Part

Step 8: Output of p

© Frank Leymann

(*) initial segments

Agenda

Basics in Quantum Physics The Qbit **Quantum Register Operators on Quantum Registers Exponential Speedup** Search & Complexity Cracking Keys Encryption **Error Correction** NISQ Conclusion

One-Time-Pad

 \bigcirc Let m = a₁...a_m be the message to be exchanged as bit-string (*clear text*)

\rightarrow Key generation

 \subseteq k = k₁...k_m be a random bit string (*key*) of same size

\rightarrow Encryption

 \bigcirc c = a₁ \oplus k₁...a_m \oplus k_m = c₁...c_m is the encrypted message (*crypto text*)

\rightarrow **Decryption**

Mechanics

Attacker cannot copy the qbit ("no cloning")!

- Sender generates a sequence of random bits
- Each such bit is encoded as qbit in a randomly selected quantum basis
- Recipient decodes qbit by measuring it in a randomly selected quantum basis
- Sender and recipient exchange for each qbit in which basis it was en-/decoded
- Qbits treated by same basis result in bits of the key other bits are destroyed
- Sender and recipient exchange subset of identified key bits to detect attacks
 - \rightarrow Too many attacks, i.e. too many differently identified key bits
 - \Rightarrow Destroy complete key
 - \rightarrow Otherwise: use the key

Result

- Attack on a single qbit can be detected with probability 1/4
- Attack on many qbits can be detected with nearly 100% probability
- \Rightarrow Generation of long keys by means of quantum channels is secure!
- This property of quantum cryptography has no classical correspondence

Because of the possibility of a secure distribution of keys, one-time-pad becomes practicable

Agenda

Basics in Quantum Physics The Qbit **Quantum Register Operators on Quantum Registers Exponential Speedup** Search & Complexity Cracking Keys Encryption **Error Correction** NISQ Conclusion
Non-Applicability of Classical Error Correction

Redundant codes (copies of qbits) cannot be created: No-Cloning!

A qbit will not change in a discrete manner (0 to 1, 1 to 0), but the amplitudes of superposition can be changed arbitrarily: **Continuous Errors**!

Reading means measurement, but this destroys the state, i.e. recovery of the original state is impossible: **Destructive Reads**!

Physical/Logical Qbits

Bit-Flip Error:

Qbit in state ψ is changed into $X\psi$ (Pauli Matrix X): X(a|0>+b|1>) = b|0>+a|1>

Phase-Flip Error:

Qbit in state ψ is changed into $Z\psi$ (Pauli Matrix Z): Z(a|0>+b|1>) = a|0> - b|1>...etc ...

Encoding 1 qbit by 9 qbits allows to detect and correct any (bit single) error!

$$\begin{split} |0\rangle \mapsto \frac{\left(|000\rangle + |111\rangle\right) \cdot \left(|000\rangle + |111\rangle\right) \cdot \left(|000\rangle + |111\rangle\right)}{2\sqrt{2}} \\ |1\rangle \mapsto \frac{\left(|000\rangle - |111\rangle\right) \cdot \left(|000\rangle - |111\rangle\right) \cdot \left(|000\rangle - |111\rangle\right)}{2\sqrt{2}} \end{split}$$

...and other encodings are possible. But:

N noisy "physical" qbits are needed to realize 1 stable "logical" qbit!

But Gates May Fail Too

k

Qbit -

1 Qbit is encoded by k error-correcting Qbits

Block, physical Qbits

Universal gate G is substituted by a *coded gate* G' (coded gate G' ist quantum subroutine implementing the functionality of G)

After executing a coded gate, error correction on affected blocks are run

Agenda

Basics in Quantum Physics The Qbit **Quantum Register Operators on Quantum Registers Exponential Speedup** Search & Complexity Cracking Keys Encryption **Error Correction NISQ**

Conclusion

Technological Problems

Decoherence : Qbits are unstable

 \Rightarrow State of a qbit decays over time (often fast!)

- \rightarrow Implementations of qbits even results in disturbances
- \Rightarrow Increasing number of qbits is difficult

Gate Fidelity : individual operations are (a bit) imprecise

 \Rightarrow Error of an algorithm increases with number of operations

 \Rightarrow Only algorithms with "a few" operations can be correctly performed

Readout Error: Measuring a qbit is imprecise

 \Rightarrow Results are distorted

Obit Connectivity : Not all obits have a physical connection

- \Rightarrow 2-qbit operations cannot be performed on arbitrary pairs of qbits
 - \rightarrow Reminder: 2-qbit operations are key for universal sets of operations
- \Rightarrow Additional SWAP operations needed

 \Rightarrow Number of operations to implement an algorithm increases © Frank Leymann

AAS

What is NISQ?

... attempt to do meaningful quantum computing in such a noisy situation!

NISQ (<u>noisy intermediate-scale quantum</u>) Technology uses these...

- 50..100 Qbits
- with a limited number of operations in algorithms
- ...to provide significant proof of quantum supremacy

<u>Problem</u>: Classical computer get more powerful over time, i.e. the number of qbits and number of reliably performed gates must be adapted to proof quantum supremacy

Quanten Computer vs Super Computer

Quanten Computer are significantly more energy-efficient than super computers

Hardware of Quanten Computer is significantly cheaper than a super computer

In the second secon

 \Rightarrow Even for problems that a classical super computer may solve faster, a QC may be more appropriate

Entanglement Threshold

Quantum states that are thus complex (because of entanglement) that they cannot be simulated on a digital computer

Indicators for *quantum advantage*:

- 1. There are problems that are hard to solve on a classical computer, but easy to solve on a quantum computer (e.g. factorization).
- 2. Even on the largest classical computer, a general quantum computer cannot be simulated (while a quantum computer can easily do everything that a classical computer can do)
- 3. There are problems that can only be solved on a quantum computer

50 Qbit Threshold

Even with todays^(*) most powerful classical computers, a quantum computer with 50 qbit can <u>not</u> be simulated

A 50 Qbit quantum computer is already available to selected user groups ("intermediate-scale")

<u>But</u>: these qbits are noisy, i.e. there usability is limited (precision of operations, number of sequentially executed operations,...)

 \Rightarrow No practical use of quantum error correction yet

"*Error Proneness*": No more than about 1000 basic 2-qbit operations can be performed in sequence

 \Rightarrow Limitation of NISQ Technology

Hybrid Architecture

For the next foreseeable time, Quantum Computer will be "special computers" offered in the cloud

⇒ Software Architecture is "hybrid" (*Quantum Variational*)

Example:

General paradigm for optimization problems:

- Compute a quantum state on a QC
- Measure the qbits
- Process the measured results on a classical computer
- Derive indicators for improving the quantum state

Iterate this cycle until quantum state converges, and derive approximate solution from this

$\mathbf{QAOA}: \mathbf{Quantum}\ \mathbf{Approximate}\ \mathbf{Optimization}\ \mathbf{Algorithm}$

Promising NISQ Applications

- Deep learning
- Matrix inversion
- Recommender
- Semidefinite programming (e.g. SVM)
- Simulation
- •••

Agenda

Basics in Quantum Physics The Qbit **Quantum Register Operators on Quantum Registers Exponential Speedup** Search & Complexity Cracking Keys Encryption **Error Correction** NISQ Conclusion

Plattform und Ökosystem für Quantenunterstütze Künstliche Intelligenz

(Platform and Ecosystem for quantum supported Artificial Intelligence)

Universität Stuttgart

Federal Ministry for Economic Affairs and Energy

Goals

Summary

- Quantum algorithms are very different from classical algorithms
 ⇒ Very different skills are needed to solve problems with a QC
- The current state of the art of software for implementing quantum computing is at the assembler level
- Hardware of quantum computers is rapidly evolving ⇒ In the next few years deep problems will very likely become solvable
- NISQ (and QC-implied skills) suggest to start now becoming acquainted with quantum technology

Quote by Enrico Fermi

I am still confused...

... but at a higher level!

© Frank Leymann

End