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Heisenberg’s 
Uncertainty Principle

!4

Δx ⋅ Δp ≥ h
4π



© Frank Leymann

Schrödinger’s Cat
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 Measuring delivers the result - it destroys superposition
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Dilbert Version
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http://dilbert.com/strip/2012-04-17
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Qbit

!8

State of a qbit is 
 

ie a linear combination of       and  
α, β∈ℂ and |α|2 + |β|2 = 1.
Ie a quantum state is a vector   
on the unit circle S1. 
            is a basis of the state space

α 0 + β 1

0 , 1{ }

0 1

0 = 1
0

⎛

⎝⎜
⎞

⎠⎟
1 = 0

1
⎛

⎝⎜
⎞

⎠⎟

Quantum bit (Qbit) is in the two classical states      or      at the same time (!): Superposition0 1
→ not quite right: see refinement a bit later
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Spherical Coordinates
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For each Qbit |𝜓⟩ there is a θ∈[0, 𝜋] and a ρ∈[0, 2𝜋], such that

ψ = cosθ
2
0 + eiρ sinθ

2
1

 

This is a bijective map of S3  
(subset of 4-dimensional space)  

onto S2 (subset of 3-dimensional space):
!2 = "4 ⊃ S 3#"2 # S 2 ⊂ "3
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Bloch Sphere
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ψ = cos
θ
2

0 + eiρ sin
θ
2

1  !  θ ,ρ( )

ψθ

ρ

x

y

z

θ = 0 ⇒ 𝜓 = |0⟩  

θ = 𝜋 ⇒ 𝜓 = |1⟩  

θ = 𝜋/2 ∧ ρ = 0 ⇒  
𝜓 = 1/√2·(|0⟩ + |1⟩) =: |+⟩

θ = 𝜋/2 ∧ ρ = 𝜋 ⇒  
𝜓 = 1/√2·(|0⟩ − |1⟩) =: |−⟩

θ = 𝜋/2 ∧ ρ = 𝜋/2 ⇒  
𝜓 = 1/√2·(|0⟩ + i·|1⟩) =: |i⟩

θ = 𝜋/2 ∧ ρ = 3𝜋/2 ⇒  
𝜓 = 1/√2·(|0⟩ − i·|1⟩) =: |−i⟩

|0⟩ 

|1⟩ 

|−⟩ 

|+⟩ |i⟩ |−i⟩ 



© Frank Leymann

Intuition of a Qbit

!11

0

1

A bit is either "0" or "1"
→ Two possible values

Bit

|0⟩ 

|1⟩ 

Qbit
A qbit is an arbitrary point on the  

Bloch Sphere
→ Uncountably infinit possible values
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Measurement

!12

Classical bits can be read 
⇒ You can find out the exact state (value 0 or 1) of the bit

Reading a qbit means measurement, and measuring destroys superposition!

Corollary: A qbit can be read only once.

Can’t be done for qbits, their state is the superposition α 0 + β 1

Measuring                            destroys superposition and results in

state       with probability         

state       with probability          

x =α 0 + β 1

0

1

α
2

β
2

Measurement ≡ Random Experiment
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Single Computation Steps 

!13

A computation step creates from a state (a vector of 
length "1") a new state (again a vector of length "1").

A computation step is a linear map preserving 
lengths, thus, a unitary map. 

A computation step is represented by a unitary linear map

γ 0 +δ 1
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Principle of a 
Quantum Algorithm
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Unitary  
Transformation  

Measurement
= hermitian  

Transformation

Result

State 
Preparation

Pre-  
Processing Post-Processing
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Example: Coin Flipping

!15

We want an algorithm, that results in       with probability 1/2,

and that results in       with probability 1/2

0

1

H(|0>)

H(|1>)

|1>

|0>

x 0Step 1: Qbit      is initialized in state       
Step 2:  Hadamard transformation H is applied to
                 thus,       transitions into state

x
x 1

2
0 + 1( )

Step 3: Measuring gives the desired result
The algorithm produces a completely random bit, i.e. a random number:

Classical algorithms can only produce pseudo random numbers!

 
  
 
  
               

1.  x ← 0

2.  x ← H x

3.  Measure x
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Impossible Algorithm: 
No-Cloning Theorem

!16

There can be no algorithm,  
which can copy each arbitrary state of a system.

Formalization:

such that for a chosen c ∈H (the state receiving the copy)

There exists no unitary transformationU :H→ H

and an arbitrary state ψ ∈H holds: id⊗U( ) ψ ⊗ c( ) = ψ ⊗ ψ
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Quantum Register: 
Informally
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Quantum register is a series of n qbits

Classical register is a series of n bits

Quantum register with n qbits is the
superposition of the corresponding 2n states

00...00 ,  00...01 ,  00...10 ,..., 11...11

Classical register with n bit → 1 value at a time

Quantum register with n bit → 2n value at the same time

Quantum computer manipulates 2n values at the same time  
(Quantum Parallelism)

E.g.. 250 = (210)5>(103)5=1015 (≙Peta…)
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Quantum Register: 
Hardware

!19

https://www.research.ibm.com/ibm-q/technology/devices/images/5qubit.png

https://www.theregister.co.uk/2017/03/06/
ibm_has_cloud_access_to_quantum_computer_400_times_smaller

_than_dwave_system/
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2-Qbit Quantum Register: 
Formally
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This is a product!
("tensor product")R = x1 ⊗ x0

x0 = γ 0 0 + γ 1 1

x1 = β0 0 + β1 1

R = x1 ⊗ x0
= β0 0 + β1 1( ) ⋅ γ 0 0 + γ 1 1( )
= β0γ 0 0 0 + β0γ 1 0 1 + β1γ 0 1 0 + β1γ 1 1 1

=α00 00 +α01 01 +α10 10 +α11 11
R =α00 0 0 +α01 0 1 +α10 1 0 +α11 1 1Withα ij = βiγ j
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Quantum Register
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Let 2H be the ℂ-vector space spanned by 0 , 1{ }

Then,                                             with                 is called

state of the n-qbit-quantum register  xn−1 ⊗!⊗ x0

 φ  = 1φ ∈ 2H
⊗n := 2H ⊗!⊗ 2H

n−times
! "## $##

!2
n

= 2H
⊗n
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Separable & Entangled 
States

!22

is called  separable :⇔φ ∈H1⊗!⊗ Hn

φ = ψ 1 ⊗!⊗ ψ n with ψ i ∈Hi ,  1≤ i ≤ n

is called entangled :⇔       is not separableφ φ
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Entanglement
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Measuring the first qbit results in 
with probability 1. 

The second qbit will be measured as      
or      with probability 1/2      

Einstein–Podolsky–Rosen Paradox  
(EPR Paradox)

A state that is not separable is called entangled 

1
2
00 + 01( )

0

0 1

Measuring the first qbit results in 
 or      with equal probability. 

After that the value of the second 
qbit is already determined!

1
2
00 + 11( )

0 1

1
2
00 + 01( ) = 1

2
0 ⊗ 0 + 1( )

(separable)
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Intuition:  
Entanglement as Global Phenomenon

!24

Manipulation of a single Qbit |xi⟩ of a quantum register  |x1⟩ ⊗ … ⊗ |xn⟩

has impact on all qbits of the quantum register
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Entanglement: Importance

!25

Every computation that is not involving entangled qbits,  
can be performed with the same efficiency with classical computations.

 Entanglement is unique for quantum computing!

(Jozsa / Linden, 2003)

 Every quantum algorithm showing exponential speedup  
compared to classical algorithms, must exploit entanglement.
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1-Qbit Operators
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X = 0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
Y = 0 −i

i 0
⎛

⎝⎜
⎞

⎠⎟
Z = 1 0

0 −1
⎛

⎝⎜
⎞

⎠⎟

X, Y, Z are called Pauli-Matrices

H = 1
2

1 1
1 −1

⎛

⎝⎜
⎞

⎠⎟

Hadamard Matrix

S = 1 0
0 i

⎛

⎝⎜
⎞

⎠⎟

Phase Matrix

T =
1 0

0 e
iπ
4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

π/8 Matrix
(yeah, strange: π/8 vs π/4;
pure historical reasons!)

Quantum NOT, Bit Flip Phase Flip

A unitary map f : 2H → 2H is called 1-qbit operator (…Gate)



© Frank Leymann

1-Qbit Gates

!28

H

X

Y

Z

S

T

Hadamard

Pauli-X

Pauli-Y

Pauli-Z

Phase

𝜋/8

0 1
1 0

⎛

⎝⎜
⎞

⎠⎟

0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

1
2

1 1
1 −1

⎛

⎝⎜
⎞

⎠⎟

1 0
0 i

⎛

⎝⎜
⎞

⎠⎟

1 0

0 e
iπ
4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Geometry  
of Exponential Pauli Operators
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x

y

z

θ

Rx θ( )ψ

ψ

x

Rx θ( )           is rotation by θ 
around x-axis

y
θ

ψ

Ry θ( )ψ

Ry θ( )           is rotation by θ 
around y-axis

z

θ
ψRz θ( )ψ

Rz θ( )           i is rotation by θ 
around z-axis
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Examples

!30

x

y

z|0⟩ 

|1⟩ 

|−⟩ 

|+⟩ 
|i⟩ |−i⟩ 

H 0 = +

x

y

z

|+⟩ 

|0⟩ 

Rx
π
2

⎛
⎝⎜

⎞
⎠⎟
0 = +

x

y

z|0⟩ 

|1⟩ 
Rx π( ) 0 = 1

X 0 = 1

Rz π( ) + = −

Z + = −

x

y

z

|−⟩ 

|+⟩ 

H 0 = +

Ry
3π
2

⎛
⎝⎜

⎞
⎠⎟
Rx π( ) 0 = +

x

y

z

|+⟩ 

|0⟩ 
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1-Qbit Operators: 
Decomposition

!31

A set U of 1-qbit operators is called universal :⇔  
Each 1-qbit operator is a finite combination of operators from U 

The set of Pauli-Operators are universal for 1-qbit operators

∃ α ,β ,γ ,δ ∈! :  U = eiαRz β( )Ry γ( )Rz δ( )
Z-Y Decomposition

X-Y Decomposition
∃ α ,β ,γ ,δ ∈! :  U = eiαRx β( )Ry γ( )Rx δ( )

Let U be a 1-qbit operator. Then:

Every 1-qbit operator is a composition of rotations on the Bloch Sphere
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Operators on  
Quantum Registers

!32

A set  U  of quantum-register-operators is called universal :⇔ 
Every quantum-register-operator is a finite combination of operators from  U 

2H ⊗!⊗ 2H2H
⊗n =Let n>1, 

2H
⊗nA unitary map f :              →               is called 

n-qbit operator (or quantum-register-operator oder quantum gate)
2H

⊗n
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Two-Level Operators

!33

f is called two-level :⇔ ∃ U ∈!2×2 :  M(f) =

1
"

1

U

1
"

1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

and U is unitary

A two-level operator modifies  
at most two adjacent qbits of a quantum register

  Let                       be a unitary mapf :V →V

f1
f2

f3
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Decomposition into 
Two-Level Operators

!34

The set of all two-level operators on quantum registers 
is universal.

Problem:  There is an infinite number of two-level operators.
But the set of universal operators should be "small"!
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Two-Level Operators: 
Hardware

Two-level operator can be applied

Two-level operator  
can not be applied

Two-level operator requires connection between the two qbits
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CNOT 
(Controlled Not)

!36

     0  1
0   0  1 
1   1  0

⊕

I.e. if x=1 then y will be negated; otherwise, y is not changed at all
(x is called control-qbit, y is called target-qbit)

CNOT is unitary      

⊕ : {0,1} →  {0,1} with  x⊕y ↦ x+y mod 2

CNOT : 2H ⊗ 2H→ 2H ⊗ 2H
x, y ! x,x⊕ y

CNOT Gate

x

y

x

x⊕y
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CNOT and Entanglement

!37

1
2
0 + 1( )⊗ 0 = 1

2
00 + 10( ) is separable

CNOT 1
2
00 + 10( )⎛

⎝⎜
⎞
⎠⎟
= 1
2
00 + 11( ) is entangled

CNOT can transform separable states into entangled states

CNOT 1
2
00 + 11( )⎛

⎝⎜
⎞
⎠⎟
= 1
2
00 + 10( )

CNOT can transform entangled states into separable states
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Entanglement: Hardware

Can be immediatelyentangled

Can not be 
immediately entangled

Immediate entanglement of two qbits requires connection between them

 ⇒ Connectivity of a quantum chip is important
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Decomposition into CNOT 
and 1-Qbit Operators

!39

For an n qbit quantum register it is d=2n.
The number of required 1-qbit operators and CNOTs is O(n2·4n) 

The set of 1-qbit Operators and CNOT is universal.

Reminder: The Pauli-Matrices is a set of universal 1-qbit operators

Problem:  This is not an efficient implementation of quantum register operators
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Approximation

!40

Using {H, S, T, CNOT},
each operator U on a quantum register 

can be approximated with arbitrary precision. 

Solovay-Kitaev Theorem (1997)

Assumption: This implementation is acceptable. 
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Depth of an Algorithm 
(a.k.a. Quantum Circuit)

The depth of a quantum circuit is the number of layers of 
1- or 2-qbit gates that operate in parallel on disjoint qbits.

G11

G12

G13

G14

G21

G22

G23

G32

G31

The breadth of a quantum circuit is the number of manipulated qbits.
!41
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Examples

 

 

 

 

 

 

 

 

 

G

 

Depth(G) = 2
Breadth(G) = 7

TH

S

H

G’

Depth(G’) = 3
Breadth(G’) = 3

TH

S

H
!42
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Noise

!43

Quantum operators are typically implemented by rotation operators

H = i ⋅Rz π( ) ⋅Ry − π
2

⎛
⎝⎜

⎞
⎠⎟
⋅Rz 0( )E.g.:

Typically, these are rotations by non-rational angels

Such rotations cannot be performed precisely

⇒ Quantum operators are typically noisy (i.e. erroneous)

Qbits are typically interacting with their environment, i.e. they are unstable

⇒ A quantum algorithm cannot per performed for an arbitrary long time,  
i.e. it cannot contain arbitrary many steps

⇒ Qbits "decay" over time (decoherence)
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Noisy Algorithms

!44

 

 

 

  

 
  

 

 
 

Error! Error!

w: width 
d: depth 
ε:  error rate

Rough estimation of the "size" of a quantum algorithm  
that can be performed without errors:

wd ≪ 1
ε

But: See "Error Correction" later!
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Consequences

!45

Deep quantum algorithms ⇒ few qbits  
⇒ efficient classical simulation possible

wd ≪ 1
ε

Shallow quantum algorithms ⇒ many qbits  
⇒ potential for quantum advantage

See NISQ (Noisy Intermediate Scale Quantencomputing) later
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Problem

!47

f : 0,1{ }n → 0,1{ }
f constant :⇔ ∀ x, y ∈ 0,1{ }n : f (x) = f ( y)

f balanced :⇔ card f −1(0) = 2n−1 = card f −1(1)

(f  maps half of the domain to 0, the other half to 1)

Problem:
Determine with a minimum number of evaluations of f

whether f is constant or balanced!



© Frank Leymann

Classical Case

!48

In the classical case, even after having read half (i.e. 2n-1) values
it’s not clear whether f is constant or balanced

Example: 
All values read are 0, but the next value

(i.e. the (2n-1+1)-th value) is 1 ⇒ f balanciert;
or the next value is 0 ⇒ f konstant.

I.e. a classical (deterministic) algorithm requires  
(worst case) 2n-1+1 evaluations of f
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 "Oracle"

!49

Uf is unitary

( |x⟩	is an n-Qbit-Quatum Register) 

| x, y >  !  | x, y⊕ f (x) >

U f : 2H
⊗n⊗ 2H→ 2H

⊗n⊗ 2H
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Algorithm of 
Deutsch-Jozsa

Uf  will be executed exactly once!
Step 3: Evaluate f
x y ←U f x y( )

Step 1: Initialize the register
x y ← 0

⊗n
1

Step 4: Apply the Hadamard Transformation

x ← H⊗n x

Step 5: Measure
x = 0!0 ⇒  f is constant

x ≠ 0!0 ⇒  f is balanced

Step 2: Apply the Hadamard Transformation

x y ← H⊗(n+1) 0
⊗n
1( )
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Meaning

!51

The algorithm evaluates f exactly once!

In the classical case, f has to be evaluated
(worst case) 2n-1+1 times!

The quantum algorithm of Deutsch-Jozsa  
results in an exponential speedup!
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Quantum Parallelism

!52

This is "quantum parallelism"

U f H 0
⊗n( ) 0⎛

⎝
⎞
⎠=

1
N

x
x=0

N−1

∑ f (x)
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Algorithm of Grover

!54

  There is a quantum algorithm that solves the problem in

G(N ) = π
4
N = O N( )

Classical unstructured search is O(N)

⇒ Quantum search results in quadratic speedup!

We want to find out to whom a certain phone number belongs.
Alphabetic order of phone book doesn’t help!
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Application

!55

Quantum search can speed-up (selective*) NP-problems 

"Just" list all possible solutions and build a "database" out of them

Then use Grover algorithm to determine in O(√N) the solution

(*) You can define an oracle function for the problem  
(which can be done for cracking keys, traveling salesman,…)
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Bounded Error Quantum 
Polynomial Time (BQP)

!56

BQP is for quantum computing what P is for classical computing!

• Let A be a BQP algorithm 
• Let A’ be the following algorithm: 

• A is repeated N times 
• The result with highest frequency will be output

A problem is Bounded Error Quantum Polynomial time (BQP) if it can be
solved on a quantum computer with error probability ≤ ½ - ε
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Chernoff Bound

!57

P wrong majority( ) ≤ e−2Nε 2

(Chernoff Bound)

The probability to output the correct result increases 
exponentially with the number N of repetitions
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Success Amplification

!58

Let ω be the maximal probability to accept a wrong result.

N ≥ 1
2ε 2

ln 1
ω

After repetitions of a BQP algorithm

the result is correct with probability 1 − ω

Example: ε=1/4, ω=1/1000 ⇒ N=56 
⇒ After 56 repetitions the result is correct with probability 99.99%
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Prime Factorization

!60

Every number n∈ℕ can be uniquely written as product of prime numbers:

∀ n∈! ∃ p1,..., pk (n) ∈Ρ  ∃ i1,...,ik (n) ∈! : n = p1
i1 ⋅...⋅ pk (n)

ik ( n )

with i1,…,ik(n) > 0, pi≠pj for i≠j  and  P is set of all prime numbers

If you need m bits to represent n ∈ℕ as binar number, then the best  
classical algorithm for factorization of n requires the runtime

Ω 2 m3( )
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Periodic Functions

!61

k ∈ ℕ is called period of f :⇔  k is minimal

is called periodic :⇔ f :! 0 → ! 0 ∃ k ∈! ∀ x ∈! 0 : f (x) = f (x + k)

I.e. if f(x+k’) = f(x) for k’ then k’>k

Example:  Define f(x) = 2x mod 5

x        0  1  2  3  4  5  6  7  …
f(x)    1  2  4  3  1  2  4  3  …

f(4+x) = 24·2x mod 5 = 1·2x mod 5 = f(x)

⇒ f has period 4

Now: chose 0 < a < n and define  f(x) := ax mod n



© Frank Leymann

Shor’s 
Algorithm

!62

Chose 1 < a < n

z← gcd a,n( )

p← Period axmod n( )

z← gcd ap/2 −1,n( )

z← gcd ap/2 +1,n( )

p even

z = 1

z = 1

z ≠ n

Print z

Yes

Yes

Yes

Yes

No

No

No

No

• If you know the period… 
• …you’ll find a proper divisor 

within k runs with probability 
≥(1 - 1/2k)  
  

• Overall runtime is O((log n)4)

Input: n  
(odd,  
no prime power

Output: n  
(proper divisor  
of n
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=

+

+

!63

Time

Frequency

Amplitude

…
+

Frequency

Amplitude 1

1/3
1/5 …

Projection onto  
the fequencies

Spectrum            

f (x) = sin x + 1
3
sin3x + 1

5
sin5x + 1

7
sin7x + 1

9
sin9x + ...

Determining the spectrum of a function is called Fourier-Transformation
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Discrete Fourier-Transformation

!64

Often, the closed-form expression of a function f is not known, but only  
its values f(t0),…,f(tN-1) at sampling points t0,…,tN-1

ω N
k = e

2π i
N

⋅k
with                    (complex N-th root of unity) and f(tn)=fn  

with equidistant sampling point                , 0 ≤ n ≤ N−1,tn =
2πn
N

Then, the Fourier-coefficients                                    ck ≈
1
N

fn ⋅ω N
k⋅n

n=0

N−1

∑
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Quantum Fourier 
Transformation
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QFTN =

1 1 1 !

1
1

ω N

ω N
2

ω N
2

ω N
2⋅2

!
!

" " " #
1 ω N

N−1 ω N
2⋅(N−1) !

1
ω N
N−1

ω N
2⋅(N−1)

!
ω N
(N−1)⋅(N−1)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

c0
c1
c2
!
cN−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

= 1
N

1 1 1 "

1
1

ω N

ω N
2

ω N
2

ω N
2⋅2

!
!

" " " #
1 ω N

N−1 ω N
2⋅(N−1) !

1
ω N
N−1

ω N
2⋅(N−1)

!
ω N
(N−1)⋅(N−1)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⋅

f0
f1
f2
!
fN−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⇒ Fourier-Transformation becomes matrix multiplication!

ck =
1
N

fn ⋅ω N
k⋅n

n=0

N−1

∑
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Shor Algorithm: Details
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Step 3: Apply Oracle Function
R←U f R( ) = 1

N
x

x=0

N−1

∑ f (x)

Step 1: Initialize Qbit-Register
R = a b ← 0...0 0...0

Step 2: Apply Hadamard Transformation to |a>

R← H⊗n⊗ I 0 0( ) = 1
N

x
x=0

N−1

∑ 0

Step 4: Apply Quanten Fourier Transformation to |a>
a ←QFTN a( )
Step 5: y ← Measure |a>

Quantum 
Part

Step 6: Expand y as "Continued Fraction" [y0;y1,…,yn]

Step 8: Output of p

Classical
PartStep 7: p ← Determine p from convergents(*) [y0;y1,…,yk], k≤n 

(*) initial segments
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Comparison
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Shor

Classic Algorithm

n

Runtime
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One-Time-Pad
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Let m = a1…am be the message to be exchanged as bit-string (clear text)

k = k1…km be a random bit string (key) of same size

→ Key generation

→ Encryption

c = a1⊕k1…am⊕km = c1…cm is the encrypted message (crypto text)

→ Decryption

m = c1⊕k1…cm⊕km = a1…am is the original clear text
because: ci⊕ki = ai⊕ki⊕ki = ai
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Mechanics
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Sender generates a sequence of random bits

Each such bit is encoded as qbit in a randomly selected quantum basis

Recipient decodes qbit by measuring it in a randomly selected quantum basis

Sender and recipient exchange for each qbit in which basis it was en-/decoded

Qbits treated by same basis result in bits of the key - other bits are destroyed

Sender and recipient exchange subset of identified key bits to detect attacks

→ Too many attacks, i.e. too many differently identified key bits  
      ⇒ Destroy complete key
→ Otherwise: use the key

Attacker cannot copy 
the qbit ("no cloning")!
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Result

!71

Attack on a single qbit can be detected with probability 1/4

Attack on many qbits can be detected with nearly 100% probability

⇒ Generation of long keys by means of quantum channels is secure!

This property of quantum cryptography has no classical correspondence 

Because of the possibility of a secure distribution of keys, 
one-time-pad becomes practicable 
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Non-Applicability of 
Classical Error Correction
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Redundant codes (copies of qbits) cannot be created: No-Cloning!

A qbit will not change in a discrete manner (0 to 1, 1 to 0), but the amplitudes 
of superposition can be changed arbitrarily: Continuous Errors!

Reading means measurement, but this destroys the state, i.e. recovery of the 
original state is impossible: Destructive Reads!
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Physical/Logical Qbits
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Bit-Flip Error:  
Qbit in state 𝜓 is changed into X𝜓 (Pauli Matrix X):    X(a|0>+b|1>) = b|0>+a|1>

Phase-Flip Error:  
Qbit in state 𝜓 is changed into Z𝜓 (Pauli Matrix Z):     Z(a|0>+b|1>) = a|0> - b|1>

…etc …
Encoding 1 qbit by 9 qbits allows to detect and correct any (bit single) error!

0 !
000 + 111( ) ⋅ 000 + 111( ) ⋅ 000 + 111( )

2 2

1 !
000 − 111( ) ⋅ 000 − 111( ) ⋅ 000 − 111( )

2 2

N noisy "physical" qbits are needed to realize 1 stable "logical" qbit!

…and other encodings are possible. But:
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But Gates May Fail Too
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1 Qbit is encoded by  
k error-correcting Qbits

1Qbit

k
Block, 

physical Qbits

G

G’

Universal gate G is substituted  
by a coded gate G’ 
(coded gate G’ ist quantum subroutine  
implementing the functionality of G)

×

×

⎫

⎬
⎪⎪

⎭
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

Example

After executing a coded gate, error 
correction on affected blocks are runG’ EC

×

EC

EC

⎫

⎬
⎪⎪

⎭
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪
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Technological Problems
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Decoherence : Qbits are unstable 
⇒ State of a qbit decays over time (often fast!) 
→ Implementations of qbits even results in disturbances  
⇒ Increasing number of qbits is difficult

Gate Fidelity : individual operations are (a bit) imprecise  
⇒ Error of an algorithm increases with number of operations 
⇒ Only algorithms with "a few" operations can be correctly performed

Qbit Connectivity : Not all qbits have a physical connection 
⇒ 2-qbit operations cannot be performed on arbitrary pairs of qbits 
→ Reminder: 2-qbit operations are key for universal sets of operations 

⇒ Additional SWAP operations needed 
⇒ Number of operations to implement an algorithm increases

Readout Error: Measuring a qbit is imprecise 
⇒ Results are distorted 
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What is NISQ?
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NISQ (noisy intermediate-scale quantum) Technology uses these… 
• 50..100 Qbits  
• with a limited number of operations in algorithms  

…to provide significant proof of quantum supremacy 

Problem: Classical computer get more powerful over time, i.e. the 
number of qbits and number of reliably performed gates must be 
adapted to proof quantum supremacy

…attempt to do meaningful quantum computing in such a noisy situation!
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Quanten Computer vs 
Super Computer
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Hardware of Quanten Computer is significantly cheaper  
than a super computer

Quanten Computer are significantly more energy-efficient  
than super computers

⇒ Even for problems that a classical super computer may solve faster,  
a QC may be more appropriate

One hour compute time on a QC can be offered for about 200€
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Entanglement Threshold

!80

Quantum states that are thus complex (because of entanglement) that 
they cannot be simulated on a digital computer

Indicators for quantum advantage: 
1. There are problems that are hard to solve on a classical 

computer, but easy to solve on a quantum computer (e.g. 
factorization). 

2. Even on the largest classical computer, a general quantum 
computer cannot be simulated (while a quantum computer can 
easily do everything that a classical computer can do) 

3. There are problems that can only be solved on a quantum 
computer
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50 Qbit Threshold
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Even with todays(*) most powerful classical computers, a quantum 
computer with 50 qbit can not be simulated

(*) 2019

A 50 Qbit quantum computer is already available to selected user groups 
("intermediate-scale")

But: these qbits are noisy, i.e. there usability is limited (precision of 
operations, number of sequentially executed operations,…)

"Error Proneness": No more than about 1000 basic 2-qbit operations 
can be performed in sequence

⇒ Limitation of NISQ Technology

⇒ No practical use of quantum error correction yet
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Hybrid Architecture
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General paradigm for optimization problems: 
• Compute a quantum state on a QC 
• Measure the qbits 
• Process the measured results on a classical computer 
• Derive indicators for improving the quantum state 

Iterate this cycle until quantum state converges, and derive approximate 
solution from this

For the next foreseeable time, Quantum Computer will be "special computers" 
offered in the cloud

⇒ Software Architecture is "hybrid" 
(Quantum Variational)

QAOA : Quantum Approximate Optimization Algorithm

Example:
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Promising NISQ 
Applications
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Deep learning 

Matrix inversion 

Recommender 

Semidefinite programming (e.g. SVM) 

Simulation 

…
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Plattform und Ökosystem für  

Quantenunterstütze Künstliche Intelligenz
(Platform and Ecosystem for quantum supported Artificial Intelligence)

�85
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Goals
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QAlgo 
Repository

QAlgo 
Catalogue

Sources of  
Quantum Algorithms

Analysis  
Cleansing  

Unification

Search

Quantum 
Program 

Repository

Development

Order

Packaging

Developers

Requirements

Specialists,  
Community

Quality Insurance

Ⓐ Ⓑ

Ⓒ

Ⓓ

⓵ ⓶ ⓷

⓸ ⓹

⓺

⓻

⓽

⓼

Users
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Summary
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Hardware of quantum computers is rapidly evolving  ⇒  In the 
next few years deep problems will very likely become solvable

The current state of the art of software for implementing 
quantum computing is at the assembler level

Quantum algorithms are very different from classical algorithms 
⇒ Very different skills are needed to solve problems with a QC

NISQ (and QC-implied skills) suggest to start now becoming 
acquainted with quantum  technology
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Quote by Enrico Fermi
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I am still confused…

…but at a higher level!
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End
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