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Heisenberg’s
Uncenrtainty Principle

Ax-Ap > —
P 4
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Schrodinger’s Cat

|

Measuring delivers the result - it destroys superposition
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Dilbert Version

HOW'S YOUR
QUANTUM COMPUTER
PROTOTYPE COMING

ALONG?

GREAT!

|
Dilbert. com DilbertCartoonist@amail com

http://dilbert.com/strip/2012-04-17
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Qbit

Quantum bit (Qbit) is in the two classical states ’O> or ‘1> at the same time (!): Superposition
— not quite right: see refinement a bit later

State of a gbit is

al0)+ B|1)
ie a linear combination of ‘O> and |1> | 3 ~]0) +BI1)
a, Pe C and lal2 + IB12 = 1. | 3
Ie a quantum state is a vector .
on the unit circle S!. 1 o 1
{\ 0), l>} is a basis of the state space | |
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A

Spherical Coordinates

For each Qbit ly) there is a O [0, 7] and a o€ [0, 2x], such that

‘w> = cos% O> +e"” sing‘ 1>

This 1s a bijective map of S3
(subset of 4-dimensional space)
onto S? (subset of 3-dimensional space):

C'=R*5S8° >R’ = S’ cR’

© Frank Leymann 9



Bloch Sphere

) =cos o)+ sin?]1) > (0.p)

©c0=0=>y=10)
‘l//> cO0=a=>yw=I1)

""""""""" =, AR o 0=72Ar0=0=
Sy =N = e

o O0=n2 A==
w=1/72-(10) = 11)) =: |-)

o 0=x2A0=n/2=
w=1/2-010) +i-11)) =: Ii)
1)
S 0=x2A0=372>
w= 123105 —i-11)) = -i)
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Intuition of a Qbit

0)

1
Bit

A bit 1s either "0" or "1"
— Two possible values

© Frank Leymann

1)
Qbit
A gbit 1s an arbitrary point on the

Bloch Sphere
— Uncountably infinit possible values
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Measurement

Classical bits can be read
= You can find out the exact state (value O or 1) of the bit

Can’t be done for gbits, their state is the superposition | O> + | 1>
Reading a gbit means measurement, and measuring destroys superposition!
Corollary: A gbit can be read only once.

Measuring |x)=a|0)+f|1) destroys superposition and results in /

state 0> with probability ‘0{‘2 _1%‘

state [1) with probability |4’

© Frank Leymann 12



Single Computation Steps

A computation step creates from a state (a vector of \
length "1") a new state (again a vector of length "1"). 7/‘0> n 5‘ 1>

B ]0) +Bl1)
A computation step is a linear map preserving ;' \ '_; N

lengths, thus, a unitary map. -1 o |

-1l

A computation step 1s represented by a unitary linear map

© Frank Leymann
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© Frank Leymann

Principle of a
Quantum Algorithm

State
Preparation

..........................................

Pre-
Processing

Unitary
Transformation

—>

Measurement
= hermitian
Transformation

..........................................
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Example: Coin Flipping
We want an algorithm, that results in ‘O> with probability 1/2,

and that results in ‘1> with probability 1/2

1>
1. x> e‘O> H)
2. x> «— H ‘ x> 10>
3. Measure ‘x> H(I1>)

Step 1: Qbit ‘x> 1s 1nitialized 1n state ‘O>
Step 2: Hadamard transformation H is applied to |x)
thus, x> transitions into state i(]o>+|1>)

V2

Step 3: Measuring gives the desired result

The algorithm produces a completely random bit, i.e. a random number:

Classical algorithms can only produce pseudo random numbers!
© Frank Leymann 15



Impossible Algorithm:
No Clonlng Theorem

‘m

|

| ~ There can be no algorlthm
;i which can copy each arbitrary state of a system.

Formalization:
There exists no unitary transformation U : H > H

such that for a chosen ‘c> € H (the state receiving the copy)

and an arbitrary state ‘l//> € H holds: (id ® U)(‘l//> ®| C>) :‘l//> ®|V/>

© Frank Leymann 16



© Frank Leymann

Agenda

Basics in Quantum Physics
The Qbit

Quantum Register
Operators on Quantum Registers
Exponential Speedup
Search & Complexity
Cracking Keys

Encryption

Error Correction

NISQ

Conclusion

17



Quantum Register:
Informally

Quantum register 1s a series of n gbits
Classical register 1s a series of n bits

Quantum register with n gbits 1s the
superposition of the corresponding 2n states

00...00), |00...01), |00...10),...,]11...11)

Classical register with n bit — 1 value at a time

Quantum register with n bit — 2n value at the same time
E.g.. 250 = (210)5>(103)5=10!5 (#Peta...)

© Frank Leymann
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Quantum Register:
Hardware

https://www.research.ibm.com/ibm-g/technology/devices/images/5qubit.png

https://www.theregister.co.uk/2017/03/06/
ibm_has cloud access to quantum_computer 400 times_smaller
_than_dwave system/

© Frank Leymann 19



2-Qbit Quantum Register:
Formally

R= ‘ x1> @‘ x0> This is a product!

("tensor product")
‘xo> - 70‘0>+71‘1>

‘x1>=ﬁ0|0>+ﬁ1‘1>

R=x)8)x)
:(ﬁ0|0>+ﬁ1‘1>)'(70‘0>+y1‘1>)
= Byralollo)+ By o))+ B, 1)0) + B |11

Withe, =By, R= 0(00‘0>‘0>+0601‘0>‘1>+a10‘1>‘0>+a11‘1>‘1>
= a,,|00) + [ 01) + 2, | 10) + o, | 11)

© Frank Leymann
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Quantum Register

Let 2H be the C-vector space spanned by {‘ O>,‘ 1>}

Then, ‘¢>e JH® =,H®®,H with H ‘¢> Hzl 1s called

state of the n-qbit-quantum register ‘xn_1> X ®‘x0>

2" ®n
C¥ = H

© Frank Leymann 21



Separable & Entangled
States

‘¢> e H ®---®@H iscalled separable :=

9)=|v,)®-®|y,) with |v,)eH, 1<i<n

‘¢> is called entangled = ‘¢> is not separable

© Frank Leymann 22



Entanglement

—=(00)+[o1)) = =0y & 0} +]1)

V2 >
A state that 1s not separable is called entangled
(separable)
1 1
——(|00)+|01)) ——(|00)+|11))
2 V2
Measuring the first gbit results in Measuring the first gbit results in
|0) with probability 1. |0) or |1) with equal probability.
The second gbit will be measured as After that the value of the second
0) or |1) with probability 1/2 qbit 1s already determined!

Einstein—Podolsky—Rosen Paradox
(EPR Paradox)

© Frank Leymann 23



PAAS
Intuition:

Entanglement as Global Phenomenon

anuyge

Manipulation of a single Qbit [x;) of a quantum register [x1) ® ... ® |Xn)

has impact on all gbits of the quantum register

© Frank Leymann 24



A
Entanglement: Importance

Entanglement 1s unique for quantum computing!

Every computation that is not involving entangled gbits,
can be performed with the same efficiency with classical computations.

Every quantum algorithm showing exponential speedup
compared to classical algorithms, must exploit entanglement.

(Jozsa / Linden, 2003)

© Frank Leymann 25
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1-Qbit Operators

A unitary map f : 2H — 2H 1s called I-gbit operator (...Gate)
Quantum NOT, Bit Flip Phase Flip
Y= 0 1 y = 0 —i 7 — 1 0
1 O i 0 0 -1

X, Y, Z are called Pauli-Matrices

( )
1 0
2l 0 i Lo Ot

Hadamard Matrix Phase Matrix /8 Matrix
(yeah, strange: 70/8 vs /4;

pure historical reasons!)

© Frank Leymann



1-Qbit Gate

Hadamard

Pauli-X

Pauli-Y

Pauli-Z

Phase

/8

© Frank Leymann

H

1
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A
Geometry

of Exponential Pauli Operators

4
) ,
R (6) is rotation by 0 R, (6) is rotation by © R (6) iis rotation by 6

around x-axis around y-axis around z-axis

© Frank Leymann 29



Examples

0a7 H|0)=|+)
A
0) 3




1-Qbit Operators:
Decomposition

A set Z of 1-gbit operators is called universal <
Each 1-gbit operator is a finite combination of operators from 7

Let U be a 1-gbit operator. Then:

Z-Y Decomposition

3 a,B,y.6eR: U=e"R(B)R (7)R.(5)
X-Y Decomposition

3 a.B.y.6€R: U=e“R (B)R (7)R.(5)

Every 1-gbit operator is a composition of rotations on the Bloch Sphere

The set of Pauli-Operators are universal for 1-gbit operators

© Frank Leymann
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Operators on
Quantum Registers

Letn>1, ,H* = H® --® H

A unitary map f: H®" — H®" is called
n-qbit operator (or quantum-register-operator oder quantum gate)

A set % of quantum-register-operators is called universal .
Every quantum-register-operator 1s a finite combination of operators from %

© Frank Leymann 32



Two-Level Operators

Let f:V — V' be aunitary map ( 1 \
1
f is called two-level := 3 U € C** : M(f) = U
and U 1s unitary 1
1
\ J

A two-level operator modifies
at most two adjacent gbits of a quantum register

fi

1Y)

© Frank Leymann
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Decomposition into
Two-Level Operators

The set of all two-level operators on quantum registers
1s universal.

Problem: There is an infinite number of two-level operators.
But the set of universal operators should be "small"!

© Frank Leymann 34



Two-Level Operators:
Hardware

Two-level operator requires connection between the two gbits

Two-level operator
can not be applied

Two-level operator can be applied

© Frank Leymann



CNOT
(Controlled Not)

CNOT: H® H— H® H
x,y>H x,x@y>
®:{0,1} - {0,1} with x®y ~ x+y mod 2

— O|®
—_— OO
O = —

I.e.1f x=1 then y will be negated; otherwise, y 1s not changed at all
(x 1s called control-gbit, y 1s called target-qgbit)

l[ CNOT is unitary ﬁ

X ® X
y N, XDy
CNOT Gate

© Frank Leymann 36



CNOT and Entanglement

L(| ()>+‘ 1>)®|0> = L(‘ 00>+| 10>) is separable

J2 2

CNOT(L(‘ OO> +‘ 10>)] = L(| OO> +‘ 1 1>) 1s entangled

V2 V2
; CNOT can transform separable states into entangled states ﬂ

1

CNOT(ﬁ(‘ 00)+|1 1))) = %q 00)+|10))

; CNOT can transform entangled states into separable states ﬂ

I

© Frank Leymann
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A
Entanglement: Hardware

Immediate entanglement of two gbits requires connection between them

Can not be
immediately entangled

an be immediatelyentangled

= Connectivity of a quantum chip 1s important

© Frank Leymann



Decomposition into CNOT
and 1-Qbit Operators

The set of 1-gbit Operators and CNOT 1s universal.

Reminder: The Pauli-Matrices is a set of universal 1-gbit operators

For an n gbit quantum register it is d=2n.
The number of required 1-gbit operators and CNOTs i1s O(n? - 4n)

Problem: This is not an efficient implementation of quantum register operators

© Frank Leymann 39



Approximation

Using {H, S, T, CNOT},
each operator U on a quantum register

can be approximated with arbitrary precision.

Solovay-Kitaev Theorem (1997)

Assumption: This implementation is acceptable.

© Frank Leymann
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Depth of an Algorithm
(a.k.a. Quantum Circuit)

The depth of a quantum circuit 1s the number of layers of
1- or 2-gbit gates that operate in parallel on disjoint gbits.

---------------------------

G21
G Ga1
G2
G32
Gis G2
G14 G23

----------------------------

The breadth of a quantum circuit 1s the number of manipulated gbits.

© Frank Leymann
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Examples

EEEEEEE Lpmmm [ ommmm- . G smmmms LemTmms . Depth(G) =2
' ¥ ' — — Breadth(G) =7

-----------------------------------

Depth(G*) =3
S HPb—e@ Breadth(G’) = 3

A
VV

© Frank Leymann 42



Noise

Quantum operators are typically implemented by rotation operators
: T
Eg: H=i-R(m) R (—5) R (0)

Typically, these are rotations by non-rational angels

Such rotations cannot be performed precisely

= Quantum operators are typically noisy (i.e. erroneous)

Qbits are typically interacting with their environment, 1.e. they are unstable

= Qbits "decay" over time (decoherence)

= A quantum algorithm cannot per performed for an arbitrary long time,
1.e. 1t cannot contain arbitrary many steps

© Frank Leymann
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Noisy Algorithms

L

Error!  Error!

Rough estimation of the "s1ze" of a quantum algorithm
that can be performed without errors:

wd <<l

E
w: width
But: See "Error Correction' later! d: depth

€. error rate
© Frank Leymann A4



© Frank Leymann

Consequences

1
wd K —

E

Deep quantum algorithms = few qbits
= efficient classical simulation possible

Shallow quantum algorithms = many qgbits
— potential for quantum advantage

See NISQ (Noisy Intermediate Scale Quantencomputing) later

45
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Problem
f:{0,1}" —>{0,1}
f constant . V x,ye{O,l}n f(x)=f(p)

f balanced < card f~'(0)=2""=card f'(1)

(f maps half of the domain to O, the other half to 1)

Problem:
Determine with a minimum number of evaluations of
whether f 1s constant or balanced!

© Frank Leymann
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Classical Case

In the classical case, even after having read half (i.e. 2n-1) values
1t’s not clear whether f is constant or balanced

Example:
All values read are 0, but the next value
(i.e. the (2n14+1)-th value) is 1 = f balanciert;

or the next value 1s 0 = f konstant.

I.e. a classical (deterministic) algorithm requires
(worst case) 2n-1+1 evaluations of

© Frank Leymann 48



© Frank Leymann

"Oracle"

. Rn Rn
U,: ,H" ® ,H— H”" ®  H
x,y> = |[xy® f(x)>

( Ix) 1s an n-Qbit-Quatum Register)

Ut 1s unitary

49



Algorithm of
Deutsch-Jozsa

Step 1: Initizélize the register

)l v) [0} )

Step 2: Apply the Hadamard Transformation
) 12 ) n)

Step 3: Evaluate f 1

X)) U, (| x) y>) | Ur will be ekecuted exactly once! E

Step 4: Apply the Hadamard Transformation
) H*|x)

Step 5: Measure

|x> =|0---0> = f1s constant

|x) #|0---0) = fis balanced

© Frank Leymann



© Frank Leymann

Meaning

The algorithm evaluates f exactly once!

In the classical case, f has to be evaluated
(worst case) 2n-1+1 times!

The quantum algorithm of Deutsch-Jozsa
results 1n an exponential speedup!

51



Quantum Parallelism

0, (#(lo)" Jo) - =Xl o)

This 1s "quantum parallelism"




© Frank Leymann
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Algorithm of Grover

We want to find out to whom a certain phone number belongs.
Alphabetic order of phone book doesn’t help!

Classical unstructured search is O(N)

There 1s a quantum algorithm that solves the problem in

G(N)=7N =0(VN)

= Quantum search results in quadratic speedup!

© Frank Leymann
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Application

Quantum search can speed-up (selective™) NP-problems

"Just" list all possible solutions and build a "database" out of them

Then use Grover algorithm to determine in O(VN) the solution

(*) You can define an oracle function for the problem
(which can be done for cracking keys, traveling salesman,...)

© Frank Leymann 55



Bounded Error Quantum "

Polynomial Time (BQP)

A problem 1s Bounded Error Quantum Polynomial time (BQP) if 1t can be
solved on a quantum computer with error probability <5 - €

BQP is for quantum computing what P 1s for classical computing!

e Let A be a BQP algorithm
e Let A’ be the following algorithm:
e A s repeated N times
e The result with highest frequency will be output

© Frank Leymann 56



Chernoff Bound

The probability to output the correct result increases
exponentially with the number N of repetitions

© Frank Leymann

2
P (wrong maj ority) <e

(Chernoff Bound)

57



A

Success Amplification

Let o be the maximal probability to accept a wrong result.

After N = 21 ~In 1 repetitions of a BQP algorithm
E 4))
the result 1s correct with probability 1 — ®

Example: e=1/4, ®=1/1000 = N=56
— After 56 repetitions the result is correct with probability 99.99%

© Frank Leymann 58
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Prime Factorization

Every number ne N can be uniquely written as product of prime numbers:

- i (n)

. c oy — L.
V nEN le""’pk(n) EP 3 ll""’lk(n) EN'n_pl pk(n)

with 11,...,1km) > 0, pi#p; for 1A and P is set of all prime numbers

If you need m bits to represent n € N as binar number, then the best
classical algorithm for factorization of n requires the runtime

Q(2")

© Frank Leymann 60



Periodic Functions

J Ny — N is called periodic . 3keNV xeN : f(x)=f(x+k)

k € N 1s called period of f :<< k 1s minimal

Le. if f(x+k*) = f(x) for k’ then k’>k

Example: Define f(x) = 2x mod 5

x 01234567 ..
fix) 12431243 ..

f(4+x) =242xmod 5 = 1-2x mod 5 = {(x)
= f has period 4

Now: chose 0 <a <n and define f(x) := ax mod n
© Frank Leymann

61



A

.- Chosel<a<n [ b
) — Shor’s
(odd,
no prime power A ng(aa n)

Algorithm

e [f you know the period...
e ...you’ll find a proper divisor

within k runs with probability
>(1 - 1/2k)

e Overall runtime is O((log n)4)

Output: n Z#n No
(I}roper divisor Yes
ofn s
= > Print z

--
- ~ e

© Frank Leymann ~ "~--" Seaaet 62



Frequency

Projection onto
the fequencies

1. 1. 1 . 1.
f(x)=sinx+§s1n3x+gsm5x+7s1n7x+§s1n9x+...

Amplitude t

3
1/5
Spectrum I .
- - - ! »

Frequency
Determining the spectrum of a function 1s called Fourier-Transformation

© Frank Leymann 63



A
Discrete Fourier-Transformation

Often, the closed-form expression of a function f is not known, but only
its values f(to),...,f(tn-1) at sampling points to,...,tn-1

. . 1 & on
Then, the Fourier-coefficients ¢, = WZ S oy
n=0

with equidistant sampling point ¢, =——,0<n <N-1I,

27ri.

with a)]/f, —eV (complex N-th root of unity) and f(tn)=f,

© Frank Leymann 64
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Quantum Fourier
Transformation

1 1 1 1
2 N-1
1 a)N wzv wzv
. 2 22 2(N-1)
OFT,=| 1 o, o, o,
N-1 2(N-1) (N=1)(N-1) vt
€ 11 1 1 Jo
2 N-1
Cl 1 1 a)N wN wN fl
_ 2 22 2(N-1)
¢, _ N I @, @, W, fz
N-1 2(N-1) (N=1)(N-1)
Cyoi 1 o, o), W, N
= Fourier-Transformation becomes matrix multiplication!

65



A

Shor Algorithm: Details

Step 1: Initialize Qbit-Register
R =|a)|b) «|0...0)|0...0)

Step 2: Apply Hadamard Traglvsformation to la>
A
R« H®"®]1(|0)|0))=—— 0
(0)0))=— 3o
Step 3: Apply OrE}vclle Function Part
i

R—U, |R)=—F=

U, (R)= =2 /)

Step 4: Apply Quanten Fourier Transformation to la>

Quantum

|a) < QFT, (|a)
Step 5: y < Measure la> v
A
Step 6: Expand y as "Continued Fraction" [yo;y1,...,yn]
: Classical
Step 7: p <~ Determine p from convergents™ [yo;y1,...,yk], k<n Part
Step 8: Output of p +

© Frank Leymann (%) initial segments 66



Runtime _

T 30000

T 20000

T 10000

Comparison

Classic Algorithm

Shor

© Frank Leymann

10000

20000

30000

40000
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One-Time-Pad

¢ Letm = aj...am be the message to be exchanged as bit-string (clear text)

— Key generation

¢ k=Kki...km be arandom bit string (key) of same size

— Encryption

¢ c=a1®kj...amn®Pkm = ci1...cm 18 the encrypted message (crypto text)

— Decryption

¢ m=c1®ki...cm®km = ai...am 1s the original clear text
because: ci®k; = ai®ki®k; = aj

© Frank Leymann
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Mechanics

> Sender generates a sequence of random bits
Each such bit 1s encoded as gbit in a randomly selected quantum basis

> Recipient decodes gbit by measuring it in a randomly selected quantum basis
Sender and recipient exchange for each gbit in which basis it was en-/decoded
Qbits treated by same basis result in bits of the key - other bits are destroyed

> Sender and recipient exchange subset of 1dentified key bits to detect attacks

— Too many attacks, i.e. too many differently identified key bits
= Destroy complete key

— Otherwise: use the key

© Frank Leymann 70



Result

- Attack on a single gbit can be detected with probability 1/4
> Attack on many gbits can be detected with nearly 100% probability
= Generation of long keys by means of quantum channels is secure!

This property of quantum cryptography has no classical correspondence

| Because of the possibility of a secure distribution of keys,
one-time-pad becomes practicable

|
|
L

© Frank Leymann 71
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Non-Applicability of
Classical Error Correction

Redundant codes (copies of gbits) cannot be created: No-Cloning!

A gbit will not change 1n a discrete manner (0 to 1, 1 to 0), but the amplitudes
of superposition can be changed arbitrarily: Continuous Errors!

Reading means measurement, but this destroys the state, 1.e. recovery of the
original state 1s impossible: Destructive Reads!

© Frank Leymann 73



A

Physical/Logical Qbits

Bit-Flip Error:
Qbit in state y 1s changed into Xy (Pauli Matrix X): X(a|0>+b|1>) = b|0>+a|1>

Phase-Flip Error:

Qbit 1n state y 1s changed into Zy (Pauli Matrix Z):  Z(al0>+b|1>) = a]0> - b|1>
...etc ...

Encoding I gbit by 9 gbits allows to detect and correct any (bit single) error!

(|000)+|111})-(|000) +|111))-(|000) +|111))

0)1- -
1) (j000)~|111})-(|000) | 111))-(|000)—[111))
22

...and other encodings are possible. But:

N noisy "physical" gbits are needed to realize 1 stable "logical" gbit!

© Frank Leymann 74



A

But Gates May Fail Too

Qbit
1 Qbit 1s encoded by
Block k error-correcting Qbits
ock,
physical Qbits k

)L 1.8 " Universal gate G is substituted
NExampleM by a coded gate G’

—] —  (coded gate G’ i1st quantum subroutine

1L — G’ = implementing the functionality of G)

X JE— I

o E — — After executing a coded gate, error
L DA e Y € EC = :
% = ec — — correction on affected blocks are run

© Frank Leymann 75



© Frank Leymann

Agenda

Basics in Quantum Physics
The Qbit

Quantum Register
Operators on Quantum Registers
Exponential Speedup
Search & Complexity
Cracking Keys

Encryption

Error Correction

NISQ

Conclusion

76



A

Technological Problems

Decoherence : QQbits are unstable
= State of a gbit decays over time (often fast!)
— Implementations of gbits even results in disturbances
= Increasing number of gbits 1s difficult

Gate Fidelity : individual operations are (a bit) imprecise
= Error of an algorithm increases with number of operations
= Only algorithms with "a few" operations can be correctly performed

Readout Error: Measuring a gbit 1s imprecise
= Results are distorted

Obit Connectivity : Not all gbits have a physical connection

= 2-gbit operations cannot be performed on arbitrary pairs of gbits
— Reminder: 2-gbit operations are key for universal sets of operations

— Additional SWAP operations needed

— Number of operations to implement an algorithm increases
© Frank Leymann 77



What is NISQ?

‘ ...attempt to do meaningful quantum computing in such a noisy situation!

NISQ (noisy intermediate-scale quantum) Technology uses these...
e 50..100 Qbits
e with a limited number of operations in algorithms

...to provide significant proof of quantum supremacy

Problem: Classical computer get more powerful over time, 1.e. the
number of gbits and number of reliably performed gates must be
adapted to proof quantum supremacy
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Quanten Computer vs
Super Computer

Quanten Computer are significantly more energy-efficient
than super computers

Hardware of Quanten Computer is significantly cheaper
than a super computer

¢ One hour compute time on a QC can be offered for about 200€

— Even for problems that a classical super computer may solve faster,
a QC may be more appropriate

© Frank Leymann
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A

Entanglement Threshold

Quantum states that are thus complex (because of entanglement) that
they cannot be simulated on a digital computer

Indicators for quantum advantage:

1. There are problems that are hard to solve on a classical

computer, but easy to solve on a quantum computer (e.g.
factorization).

2. Even on the largest classical computer, a general quantum
computer cannot be simulated (while a quantum computer can
easily do everything that a classical computer can do)

3. There are problems that can only be solved on a quantum
computer
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50 Qbit Threshold

Even with todays®™) most powerful classical computers, a quantum
computer with 50 gbit can not be simulated

A 50 Qbit quantum computer is already available to selected user groups
("intermediate-scale")

But: these gbits are noisy, 1.e. there usability 1s limited (precision of
operations, number of sequentially executed operations,...)

= No practical use of quantum error correction yet

"Error Proneness": No more than about 1000 basic 2-gbit operations
can be performed in sequence

— Limitation of NISQ Technology
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Hybrid Architecture

For the next foreseeable time, Quantum Computer will be "special computers"
offered in the cloud

= Software Architecture 1s "hybrid"
(Quantum Variational)

Example:

General paradigm for optimization problems:

e Compute a quantum state on a QC

® Measure the gbits

e Process the measured results on a classical computer

e Derive indicators for improving the quantum state
[terate this cycle until quantum state converges, and derive approximate
solution from this

QAOA : Quantum Approximate Optimization Algorithm
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Promising NISQ
Applications

Deep learning

Matrix mversion

Recommender

Semidefinite programming (e.g. SVM)

Simulation
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© Frank Leymann

Agenda

Basics in Quantum Physics
The Qbit

Quantum Register
Operators on Quantum Registers
Exponential Speedup
Search & Complexity
Cracking Keys

Encryption

Error Correction

NISQ

Conclusion
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PlanQK

Plattform und Okosystem fiir
Quantenunterstiitze Kiinstliche Intelligenz

(Platform and Ecosystem for quantum supported Artificial Intelligence)

stone@one o QUANTUM
The Web Service Factory =7 ZIO-E0 0 EEE e
e Web Service Factory Univarsitat LMU 0
Stuttgart
% Federal Ministry
for Economic Affairs
and Energy
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Goals

Sources of Specialists, Users D
Quantum Algorithms Community
4
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Cleansing — [ Program Packaging
Catalogue Unification P Y Repository
T
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Developers
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Summary

Quantum algorithms are very different from classical algorithms
= Very different skills are needed to solve problems with a QC

The current state of the art of software for implementing
quantum computing is at the assembler level

Hardware of quantum computers is rapidly evolving = In the
next few years deep problems will very likely become solvable

NISQ (and QC-implied skills) suggest to start now becoming
acquainted with quantum technology

© Frank Leymann
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Quote by Enrico Fermi

I am still confused...

...but at a higher level!



© Frank Leymann

End

89



