
DNS - Domain Name Services

Design and Implementation of a High

Performance Domain Name Service

on Commodity Hardware

Florian Heinz (OTH Regensburg)

Martin Kluge (Vautron Rechenzentrum AG)

florian.heinz@oth-regensburg.de

martin.kluge@vautron.de
1

mailto:speaker@invalid
mailto:martin.kluge@vautron.de
mailto:speaker@invalid
mailto:martin.kluge@vautron.de
https://db1.othdb.de/summersoc24.html?ma3&print-pdf&showNotes=false#/
https://db1.othdb.de/summersoc24.html?ma3&print-pdf&showNotes=false#/
https://db1.othdb.de/summersoc24.html?ma3&print-pdf&showNotes=false#/

Domain Name System

The Internet Domain Name System is a large, hierarchical,

distributed database.

• Used to look up information associated with domain names like

www.summersoc.eu

www.summersoc.eu

DNS request for IP address

DNS response

HTTP Request/Response

DNS resolver

Webserver

Browser

• For example: Convert the domain name

into an IP address for connecting to the

webserver

• Other uses: Look up mail servers, anti-

spam information, SIP endpoints and

much more...

Domain Name System: Zone example.com

example.com. IN SOA ns1.example.com. root.example.com.

2024062301 10000 1800 1209600 3600

example.com. IN NS ns1.provider.net.

example.com. IN NS ns2.provider.net.

www.example.com. IN A 192.168.31.37

mail.example.com. IN A 192.168.23.42

mail2.example.com. IN A 192.168.24.42

example.com. IN MX 10 mail.example.com.

example.com. IN MX 20 mail2.example.com.

example.com. IN TXT "v=spf1 mx a ptr ?all"

Domain Name System

Estimated amount of data stored in the DNS:

• Domain names registered: ~359 million

• Average DNS records per Domain Name: 10-20

• Total: ~4-7 billion records

→ Large amount of information

→ High availability crucial, otherwise risk of service interruption

Domain Name System: Hierarchy

Root

.de .com .app

Set of 13 Nameservers

*.root-servers.net

(more physical servers due to Anycast)

example.de example.comdomain.de

Colocated on a single nameserver

TLD nameservers

Further subdelegations possible

Domain Name System: Distributed database

Browser

Resolver

.

Root Nameserver

.com

TLD Nameserver

example.com

Domain Nameserver

Query 1

Query 2

Query 3

delegate

delegate

actual information

Hierarchical tree structure:

Example: Lookup of www.example.com

• DNS-Root (Root nameservers)

▪ com (TLD nameservers)

◦ example (Domain nameserver)

◦ www

◦ A record: 192.168.95.65

Domain Name System: System critical

DNS servers are critical infrastructure: On failure, many services are not available,

e.g., e-mail, web services and more.

Strategies for high-availability:

• Redundant name servers (typical number: 2-4)

→ Attack all nameservers

• Tra�ic filtering on network or dns request floods

→ Cra� packets that cannot be distinguished from legitimate queries

• Using fast caches for dns requests

→ Ask for di�erent domain names to prevent successful caching

However: A skillful attacker can overcome these strategies

Domain Name System: Resilience

Optimal strategy:

The nameserver is able to answer all queries that it

receives over the network

→ Shi� bottleneck from the processing of queries to the available network

bandwidth

Goal: Saturate outgoing network interface with answers to incoming queries

Domain Name Server: Design

Design concepts:

•  Division of system into high-speed data plane and control plane

•  In-memory radix-tree based structure for fast lookup of domain names

•  In-advance preparation of DNS answer packets

•  Stateless implementation for answering TCP-based queries

→ Saturate 10-GBit/s link under worst-case conditions with inexpensive

commodity hardware (~500 EUR)

Data Plane vs. Control Plane

Data Plane vs. Control Plane

Data Plane Control Plane

•  Uses Data Plane Development

Kit (dpdk.org)

•  Direct NIC access (without OS

layer)

•  Implementation of all network

layers (up to layer 2)

•  Fast read-only access to the

DNS information tree

•  Avoids any blocking operations

•  Uses standard OS networking

stack

•  Configures the operational

parameters

•  Provides read/write interface to

the DNS information tree

•  Operations not time critical

DNS information tree:

DNS information tree

• Central element, access from data plane (ro) and control plane (rw)

• Modified radix tree

• Contains records for all served domains in-memory

• Designed for one-pass traversal:
▪ Tracks wildcards and delegations

▪ Pointers to CNAME referrals

• Built and maintained by Control Plane:
▪ from secondary sources, e.g., Databases or Zone Files

▪ via Network APIs

▪ from LUA Scripts

DNS information tree: Records

DNS information tree: Records

Possible (ine�icient) strategy:

(e.g. PowerDNS with MySQL backend)

• Wait for request

• Fetch dataset from database

• Convert to on-wire format

• Send answer packet

DNS information tree: Records

Implemented strategy:

• Fetch all records (CP)

• Build DNS information tree (CP)

• Build on-wire bu�er for all records (CP)

• Wait for request (DP)

• Look up information in tree (DP)

• Send bu�er (DP)

 Time-Memory Tradeo�!

Domain Name System: TCP requests

DNS by default packet-based (UDP)

One request packet → one answer packet

Maximum allowed UDP payload: 512 bytes

DNS answers o�en much larger today (DNSSEC!)

Stream based answers (TCP) more and more needed

Client Server

Syn

Ack

Syn/Ack

3-way handshake

Connection established!

Established 1.2.3.4:1027 -> 3.1.3.7:53

TCP connection table

Query

Ack

Answer

Data exchange

Answer

Ack

Fin

Ack

Fin/Ack

Shutdown

Connection Terminated!

TCP connection table

TCP connection table

Domain Name System: TCP requests

TCP is a stateful protocol:

but:

• All connections tracked

• Complex state machine

• High RAM usage on attack

• Prohibits spoofing

• Reliable data transfer

• Automatic retransmissions

• .. and much more

Domain Name System: TCP requests

Most TCP features not needed for DNS communication

 Idea: Stateless TCP for DNS requests

• Receive Syn → Send Syn-Ack

• Receive Ack without data → Ignore

• Receive Query → Send all answer packets at once

• Receive Fin → Send Ack

Not all edge cases covered (e.g. fragmented queries), but works well in practice

Improvement: Provide a full-fledged TCP stack and switch to light on demand

Evaluation:

System is deployed at an internet infrastructure provider:

•  ~1.040.000 Zones (i.e. Domains) served

•  ~8.470.000 Records in total

•  DNS Information Tree size: 9.8 GB

•  DNS Information Tree depth: 28 Levels

•  ~1500 requests/second in normal operation

Evaluation setup:

• Copy of production data

• Direct connection to query client with 10GBit/s link

• Worst-case queries on dataset

• Inexpensive commodity hardware:

Mainboard:  MSI MAG B550

CPU:  AMD Ryzen 5600X 6-Core

RAM:  64GB DDR4 2666 MT/s

NIC:  Intel X540 10G

Total cost:  ~500€ (excl. VAT)

Evaluation results:

Bandwidth:

Packets:

• Scales almost linearly with number of cores

• TX saturated with 7 cores

• RX saturated with 10 cores

• ~11 mio. queries processed with 10 cores

• ~8.8 mio. responses sent with 7 cores

Summary:

• Domain Name System crucial for a working internet

• Domain Name Servers should be resilient against attacks

• Traditional approaches o�en have to perform too many or expensive tasks at

query time

• This approach: Minimize work at query time:

▪ Data plane vs. Control Plane

▪ All information stored in-memory (radix-tree)

▪ Prepare all responses in advance

▪ Stateless TCP handling

• Result: 10GBit/s saturation on commodity hardware

Thanks for Listening!

See you at the poster session for demonstration and

questions.

