Minimial-Risk Training Samples for QNN Training from Measurements

University of Stuttgart

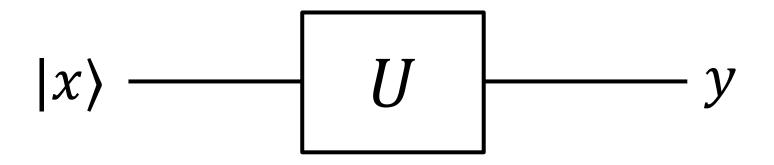
<u>Alexander Mandl</u>, Johanna Barzen, Marvin Bechtold, Frank Leymann

[lastname]@iaas.uni-stuttgart.de Institute of Architecture of Application Systems

- Preliminaries: Supervised learning on quantum computers
 - Learning from output states vs. learning from measurements
 - Requirements for minimal risk
- Research question
- Analytical results
- Experimental evaluation
- Summary and future work

Supervised Learning using QNNs

- Approximate unknown target transformation U
- By using quantum states as training samples



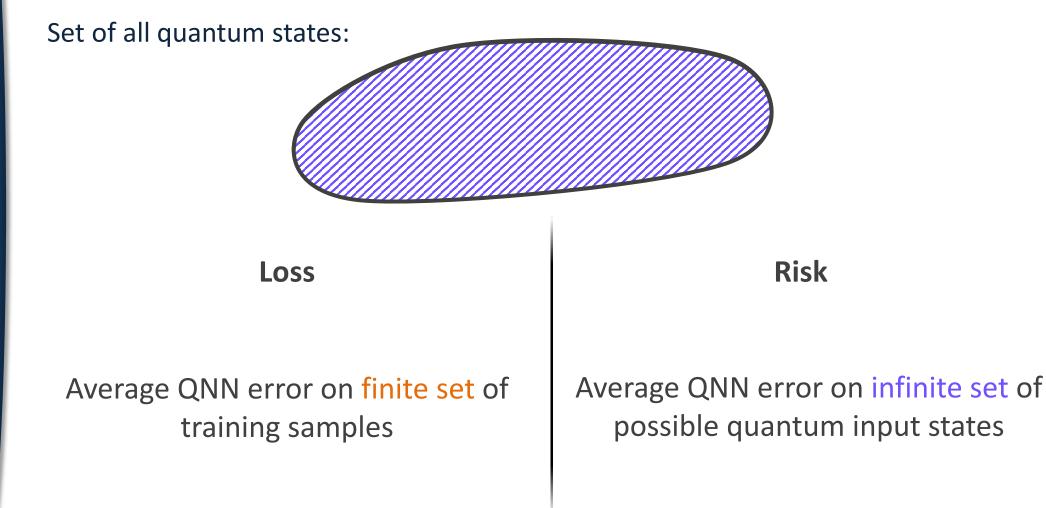
Goal:

- Obtain a quantum circuit V that behaves the same as U on the training data
 - Minimize a **loss function** on the training data
- Assumption: It behaves the same as U on all possible inputs

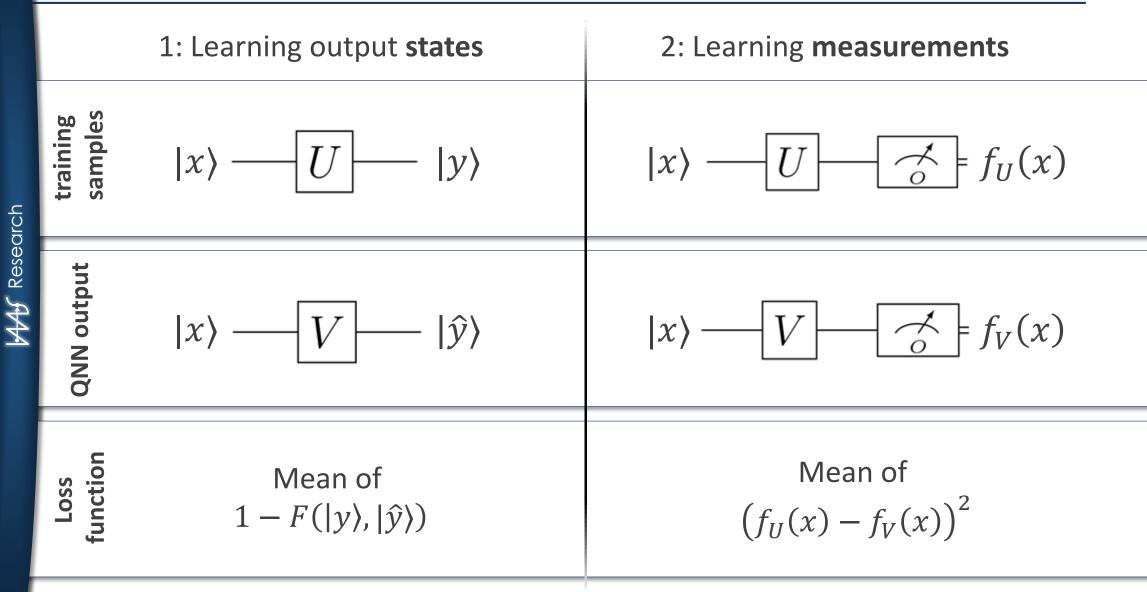
QNN Quality: Risk

M Research

Risk: Average QNN-loss on all possible inputs



Different Information/Different Scenarios



U: original transformation, O: observable, V: QNN, F: state fidelity

Supervised Learning using QNNs

- When learning output states:
 - Entanglement in training samples reduces expected risk

Expected risk after training $\geq 1 - O((rt)^2)$

r... degree of entanglement, t... number of samples

• Sharma, Kunal, et al. "Reformulation of the no-free-lunch theorem for entangled datasets." *Physical Review Letters* 128.7 (2022): 070501.

 Mandl, Alexander, et al. "On Reducing the Amount of Samples Required for Training of QNNs: Constraints on the Linear Structure of the Training Data." arXiv preprint arXiv:2309.13711 (2023).

Requirements for Minimal Risk

Entanglement proves to be a valuable resource when learning output states

- Learning from output states:
 - General bounds on the risk are proven
 - Mathematical structure of the training data for minimal expected risk is described
- Learning from measurements:
 - Some bounds on the expected risk after training are known
 - No complete description of the training data minimal expected risk available

[•] Sharma, Kunal, et al. "Reformulation of the no-free-lunch theorem for entangled datasets." *Physical Review Letters* 128.7 (2022): 070501.

[•] Mandl, Alexander, et al. "On Reducing the Amount of Samples Required for Training of QNNs: Constraints on the Linear Structure of the Training Data." arXiv preprint arXiv:2309.13711 (2023).

Find requirements for minimal risk when learning from measurements

For highly entangled data

Without entanglement

- First step: Limit observables to one-dimensional projectors $O = |o\rangle\langle o|$
 - Provide fundamentals for future generalization

Minimal Risk Training Samples

Risk: average loss of **infinitely many** possible input states

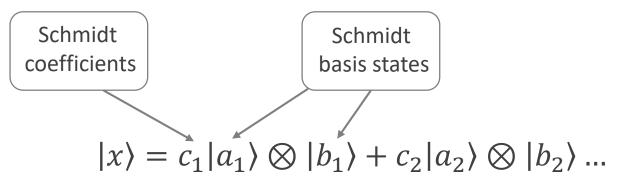
Training loss impact the risk after training negatively

Reformulate risk in terms of **fidelity** of a pair of states Use best-case as guideline: QNN V is perfectly trained Infer loss on arbitrary inputs (= risk).

- Train QNN V to
 - replicate operator U when measured with observable $O = |o\rangle\langle o|$
 - using a set of training samples S

A single training input $|\gamma\rangle = U^{\dagger}|o\rangle$ with its associated output $f_U(\gamma)$ suffices to train V with zero risk.

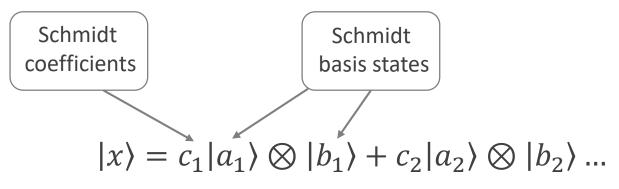
- Train QNN *V* to
 - replicate operator U when measured with observable $O = |o\rangle\langle o|$
 - using a set of training samples S that are entangled with an auxiliary system



If the training input contains $|\gamma\rangle$ as the **basis state with the largest coefficient** c_i , then this entangled input with its associated output $f_U(x)$ suffices to train V with zero risk.

 $|x\rangle = c_1 |a_1\rangle \otimes |b_1\rangle + c_2 |\gamma\rangle \otimes |b_2\rangle \dots$

- Train QNN *V* to
 - replicate operator U when measured with observable $O = |o\rangle\langle o|$
 - using a set of training samples S that are entangled with an auxiliary system



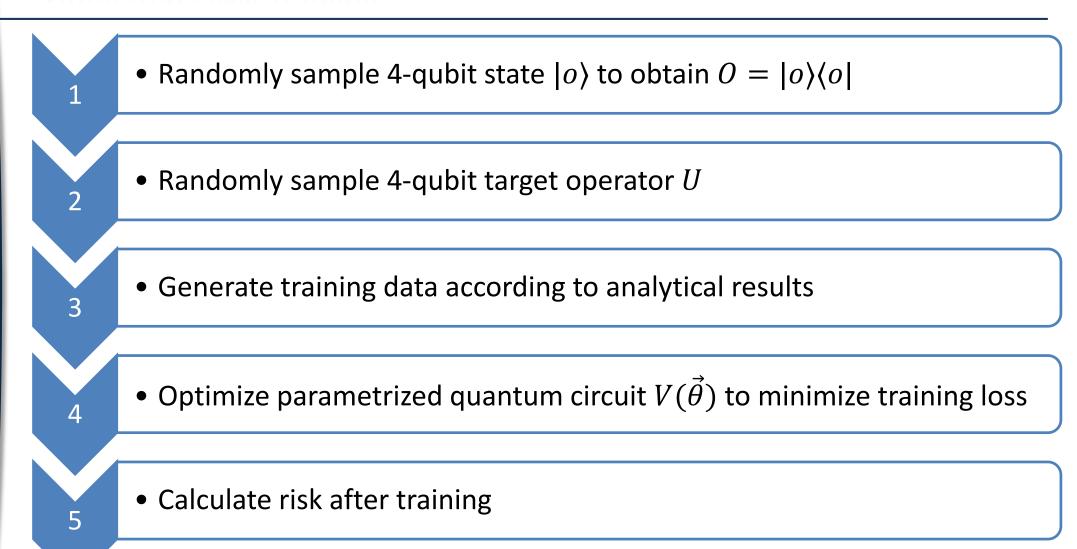
If the training input contains $|\gamma\rangle$ as the **basis state with the largest coefficient** c_i , then this entangled input with its associated output $f_U(x)$ suffices to train V with zero risk.

In particular: Always holds if $c_i^2 \ge \frac{1}{2}$

Analytical investigation found specific training samples that minimize risk

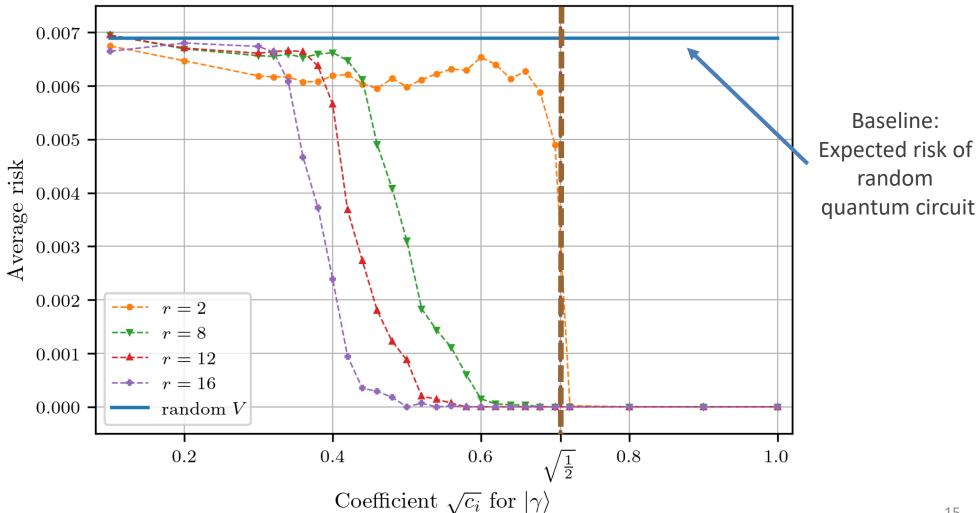
- Entanglement does not necessarily decrease the risk
- Experiment
 - Evaluate analytical findings
 - Investigate the performance if $|\gamma\rangle$ is **not available** (e.g., random inputs)

Simulated QNN Training



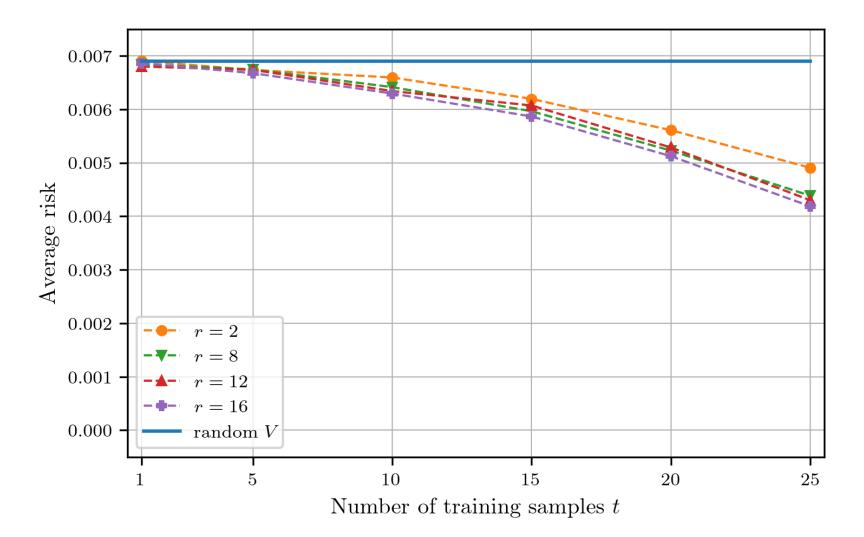
Experiment Results

Effect of the Schmidt coefficient $c_i | \gamma \rangle$ for different Schmidt ranks r for t = 1 training sample



Experiment Results

• Effect of entanglement for randomly sampled training inputs and varying number of training samples



Conclusion and Future Work

- When only the measurement result is known:
 - For one-dimensional projectors: **one training sample is enough**.
 - If sample $|\gamma\rangle$ is known: Entanglement provides no benefit
 - Entanglement produces only **minimal improvement** for random inputs
- Future work:
 - Generalizations for other observables
 - Effect of measurement processes on auxiliary system
 - Perfect training might be hard to achieve: evaluate cost function landscape