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Motivation and Content

▪ Preliminaries: Supervised learning on quantum computers

▪ Learning from output states vs. learning from measurements

▪ Requirements for minimal risk

▪ Research question

▪ Analytical results

▪ Experimental evaluation

▪ Summary and future work
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Supervised Learning using QNNs

▪ Approximate unknown target transformation 𝑈

▪ By using quantum states as training samples

▪ Goal:

▪ Obtain a quantum circuit 𝑉 that behaves the same as 𝑈 on the training data

▪ Minimize a loss function on the training data

▪ Assumption: It behaves the same as 𝑈 on all possible inputs
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𝑈|𝑥⟩ 𝑦
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QNN Quality: Risk

Risk: Average QNN-loss on all possible inputs

Set of all quantum states:
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Loss Risk

Average QNN error on finite set of
training samples

Average QNN error on infinite set of
possible quantum input states
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Different Information/Different Scenarios
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1: Learning output states 2: Learning measurements

Mean of
1 − 𝐹 𝑦 , | ො𝑦⟩

Mean of

𝑓𝑈 𝑥 − 𝑓𝑉 𝑥
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𝑈: original transformation, 𝑂: observable, 𝑉: QNN, 𝐹: state fidelity

|𝑥⟩ |𝑦⟩

|𝑥⟩ | ො𝑦⟩

|𝑥⟩ 𝑓𝑈 𝑥

|𝑥⟩ 𝑓𝑉 𝑥
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Supervised Learning using QNNs

▪ When learning output states:

▪ Entanglement in training samples reduces expected risk
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Expected risk
after training

𝑟… degree of entanglement, 𝑡… number of samples

≥ 1 − 𝑂 𝑟𝑡 2

• Sharma, Kunal, et al. "Reformulation of the no-free-lunch theorem for entangled datasets." Physical Review Letters 128.7 (2022): 070501.
• Mandl, Alexander, et al. "On Reducing the Amount of Samples Required for Training of QNNs: Constraints on the Linear Structure of the Training Data." 

arXiv preprint arXiv:2309.13711 (2023).
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Requirements for Minimal Risk

▪ Entanglement proves to be a valuable resource when learning output states

▪ Learning from output states:

▪ General bounds on the risk are proven

▪ Mathematical structure of the training data for minimal expected risk is described

▪ Learning from measurements:

▪ Some bounds on the expected risk after training are known

▪ No complete description of the training data minimal expected risk available
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• Sharma, Kunal, et al. "Reformulation of the no-free-lunch theorem for entangled datasets." Physical Review Letters 128.7 (2022): 070501.
• Mandl, Alexander, et al. "On Reducing the Amount of Samples Required for Training of QNNs: Constraints on the Linear Structure of the Training Data." 

arXiv preprint arXiv:2309.13711 (2023).
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Research Questions/Contributions

▪ Find requirements for minimal risk when learning from measurements

▪ First step: Limit observables to one-dimensional projectors 𝑂 = |𝑜⟩⟨𝑜|

▪ Provide fundamentals for future generalization

8

For highly entangled data Without entanglement



Minimal Risk Training Samples
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Methods
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Reformulate risk in 
terms of fidelity of a 

pair of states

Use best-case as
guideline: QNN 𝑉 is

perfectly trained

Infer loss on 
arbitrary inputs

(= risk).

Risk: average loss of
infinitely many

possible input states

Training loss impact
the risk after training

negatively
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Minimal Risk Training Samples: No Entanglement

▪ Train QNN 𝑉 to

▪ replicate operator 𝑈 when measured with observable 𝑂 = |𝑜⟩⟨𝑜|

▪ using a set of training samples 𝑆
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A single training input 𝛾 = 𝑈†|𝑜⟩ with its associated output
𝑓𝑈(𝛾) suffices to train 𝑉 with zero risk.
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Minimal Risk Training Samples: Entangled Data

▪ Train QNN 𝑉 to

▪ replicate operator 𝑈 when measured with observable 𝑂 = |𝑜⟩⟨𝑜|

▪ using a set of training samples 𝑆 that are entangled with an auxiliary system

12

If the training input contains |𝛾⟩ as the basis state with the
largest coefficient 𝒄𝒊, then this entangled input with its

associated output 𝑓𝑈(𝑥) suffices to train 𝑉 with zero risk. 

𝑥 = 𝑐1 𝑎1 ⊗ 𝑏1 + 𝑐2 𝑎2 ⊗ 𝑏2 …

𝑥 = 𝑐1 𝑎1 ⊗ 𝑏1 + 𝑐2 𝛾 ⊗ 𝑏2 …

Schmidt 
coefficients

Schmidt 
basis states
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Minimal Risk Training Samples: Entangled Data

▪ Train QNN 𝑉 to

▪ replicate operator 𝑈 when measured with observable 𝑂 = |𝑜⟩⟨𝑜|

▪ using a set of training samples 𝑆 that are entangled with an auxiliary system

12

If the training input contains |𝛾⟩ as the basis state with the
largest coefficient 𝒄𝒊, then this entangled input with its

associated output 𝑓𝑈(𝑥) suffices to train 𝑉 with zero risk. 

𝑥 = 𝑐1 𝑎1 ⊗ 𝑏1 + 𝑐2 𝑎2 ⊗ 𝑏2 …

Schmidt 
coefficients

Schmidt 
basis states

In particular: Always holds if 𝑐𝑖
2 ≥

1

2
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Experimental Evaluation

▪ Analytical investigation found specific training samples that minimize risk

▪ Entanglement does not necessarily decrease the risk

▪ Experiment

▪ Evaluate analytical findings

▪ Investigate the performance if |𝛾⟩ is not available (e.g., random inputs)
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Simulated QNN Training

1
• Randomly sample 4-qubit state |𝑜⟩ to obtain 𝑂 = |𝑜⟩⟨𝑜|

2
• Randomly sample 4-qubit target operator 𝑈

3
• Generate training data according to analytical results

4
• Optimize parametrized quantum circuit 𝑉( Ԧ𝜃) to minimize training loss

5
• Calculate risk after training

14
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Experiment Results

▪ Effect of the Schmidt coefficient 𝑐𝑖|𝛾⟩ for different Schmidt ranks 𝑟 for 𝑡 = 1 training sample
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Baseline: 
Expected risk of

random
quantum circuit
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Experiment Results

▪ Effect of entanglement for randomly sampled training inputs and varying number of training samples
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Conclusion and Future Work

▪ When only the measurement result is known:

▪ For one-dimensional projectors: one training sample is enough.

▪ If sample 𝛾 is known: Entanglement provides no benefit

▪ Entanglement produces only minimal improvement for random inputs

▪ Future work:

▪ Generalizations for other observables

▪ Effect of measurement processes on auxiliary system

▪ Perfect training might be hard to achieve: evaluate cost function landscape
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