Exploring the Cost Landscape of Variational Quantum Algorithms

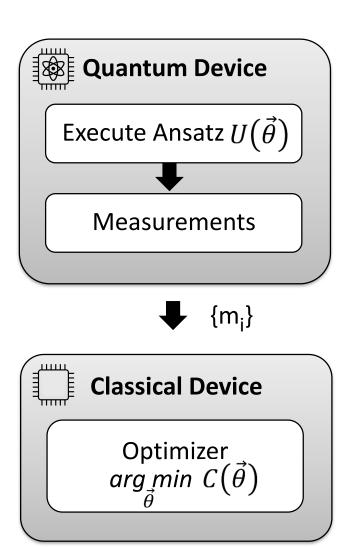
Lavinia Stiliadou, Johanna Barzen, Frank Leymann,

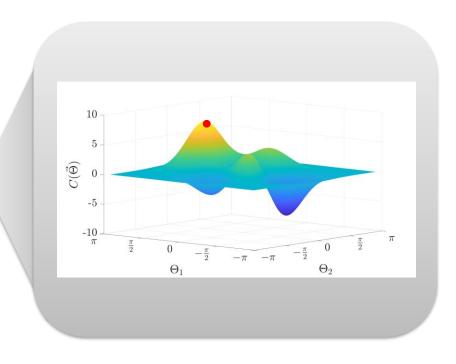
Alexander Mandl, Benjamin Weder

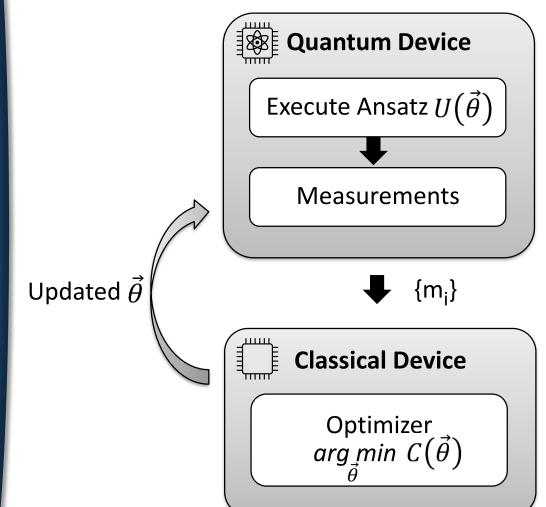
lastname@iaas.uni-stuttgart.de

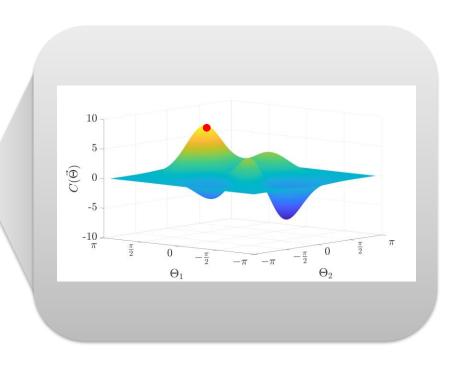
University of Stuttgart

Institute of Architecture of Application Systems

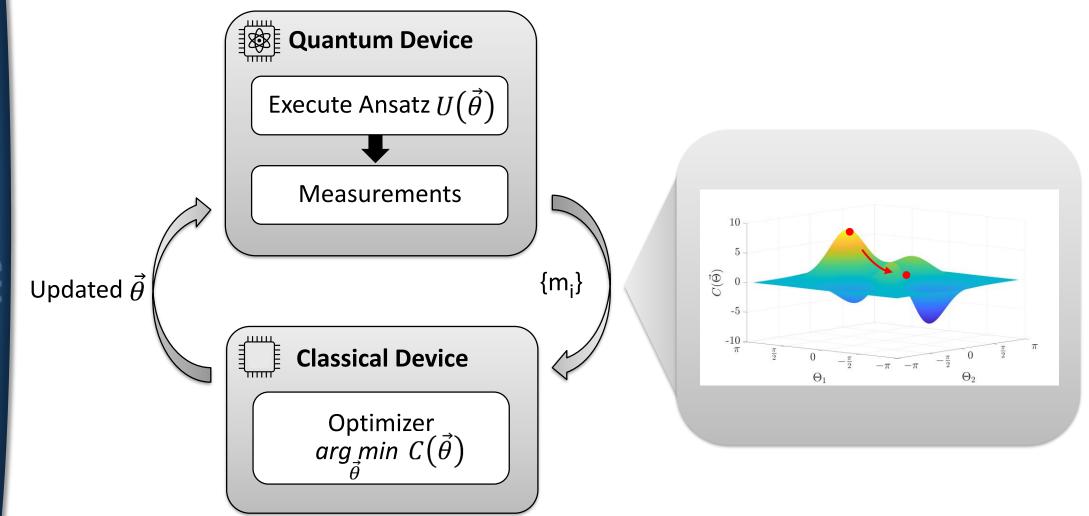


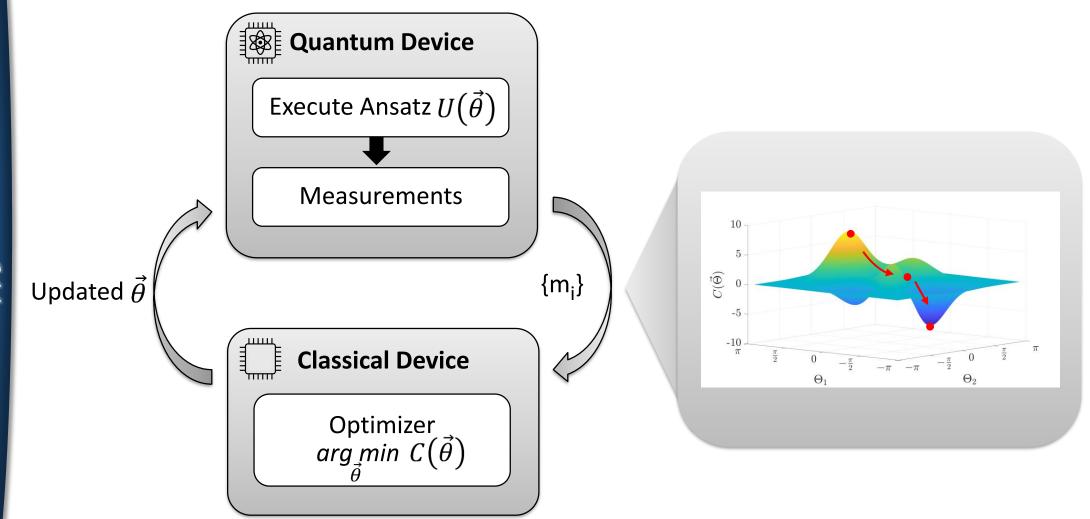




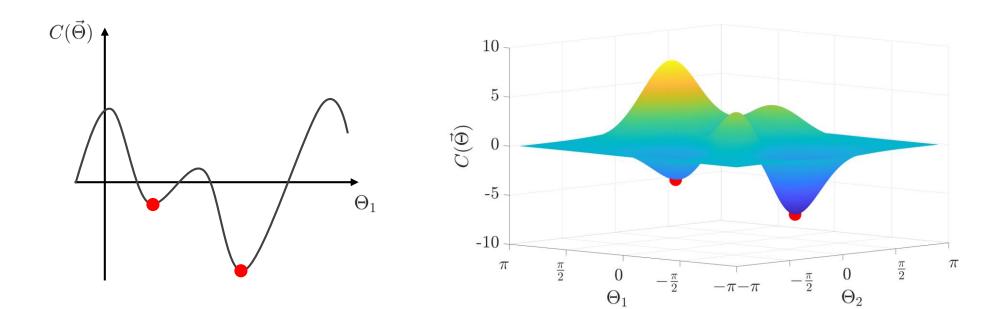


MG Research



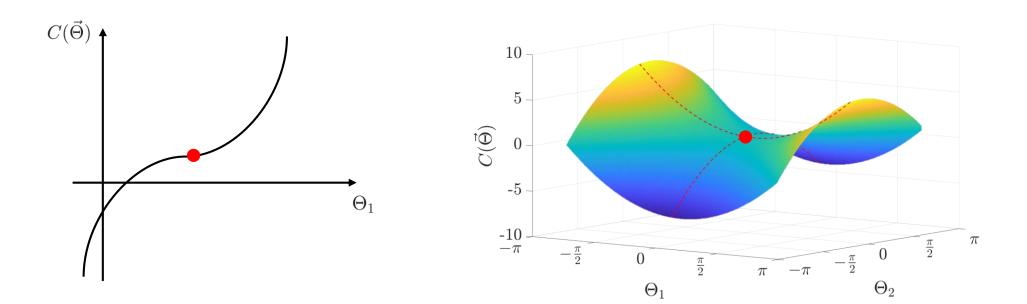


Get stuck in a local minimum instead of a global minimum



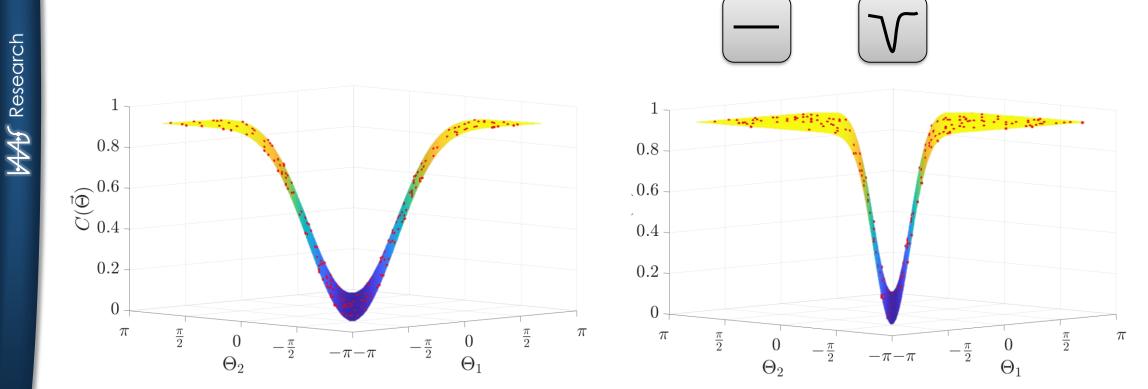
Features of the Cost Landscape:

• Likelihood of being a saddle point increases with the number of dimensions

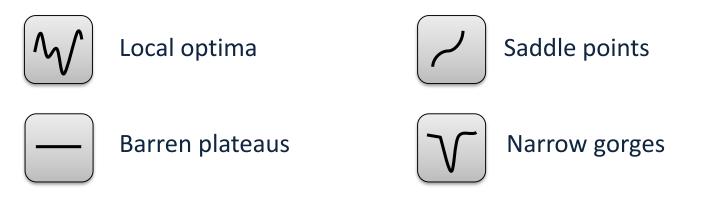


Features of the Cost Landscape:

- Many points on the flat area, where the gradient is zero or close to zero, providing no guidance
- \rightarrow Bad starting points for optimization

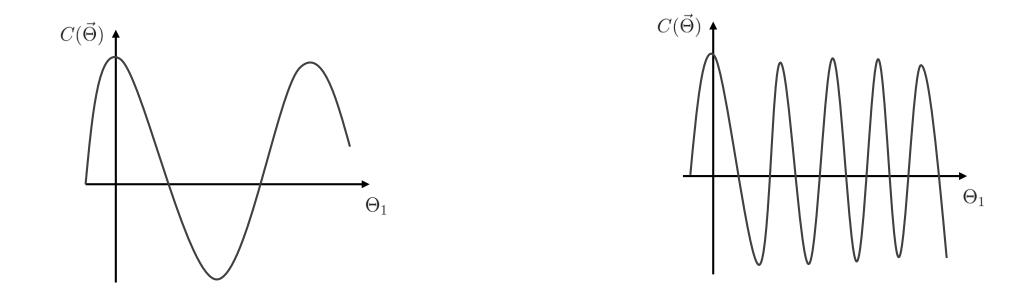


Features of the Cost Landscape:



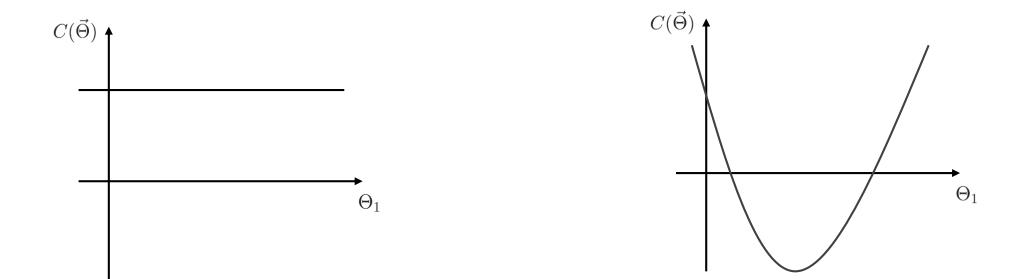
Background – Frequency

 The likelihood of suboptimal solutions increases with the frequency of each feature



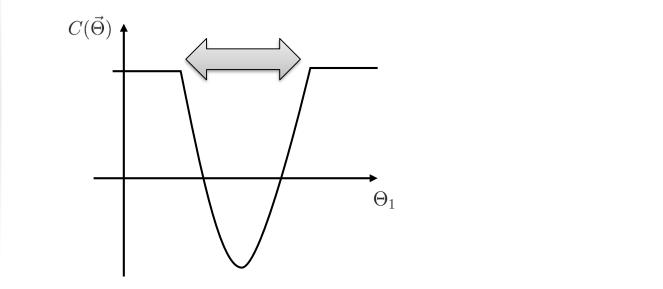
Background – Gradient Behavior

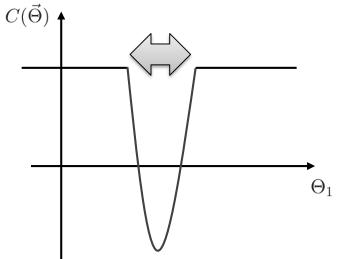
Optimizer is not able to navigate in an improving direction

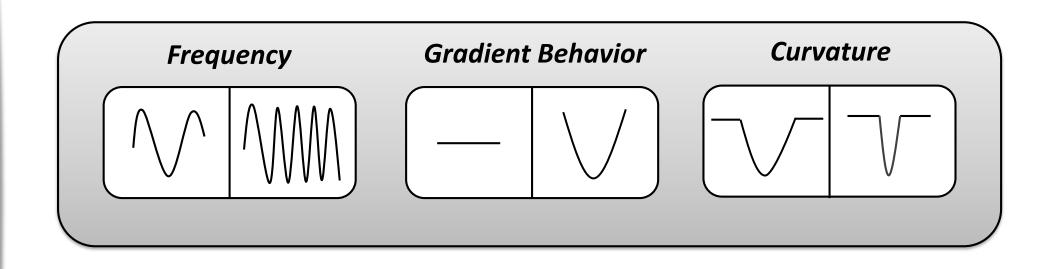


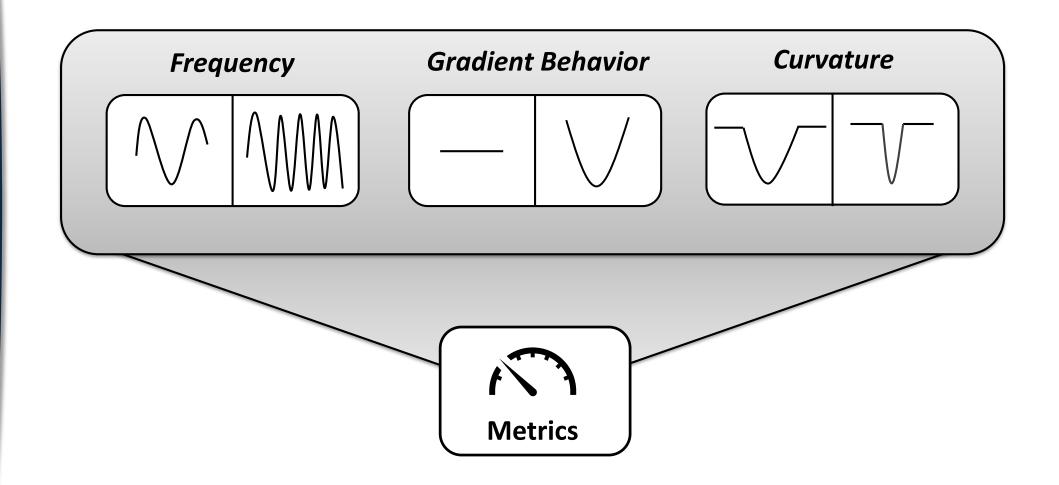
Background – Curvature

• Optimizer has to adapt step size based on the size of the feature









- Total Variation
- Fourier Density
- Inverse Gradient Standard Deviation

Scalar Curvature

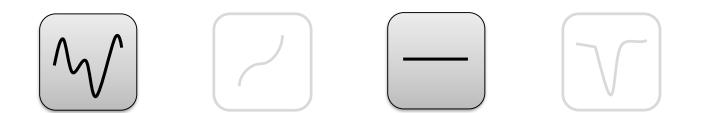
Metrics – Total Variation

• Total Variation (TV) captures how much a function varies across a finite domain

$$TV(C) = \int_{\vec{\theta} \in A} \left| \nabla C(\vec{\theta}) \right| d\vec{\theta}$$

where ∇C is the gradient of the cost function

- High TV values \rightarrow rough landscape
- Low TV values \rightarrow flat areas



Metrics – Fourier Density

• Fourier Density (*FD*) is defined as the number of nonzero Fourier coefficients

$$FD(C) = \frac{\|\vec{c}_{\omega}\|_{1}^{2}}{\|\vec{c}_{\omega}\|_{2}^{2}}$$

where \vec{c}_{ω} is a vector of Fourier coefficients, $\|\cdot\|_p$ is the *p*-Norm

- High FD values \rightarrow sharp transitions
- Low FD values \rightarrow less rough landscape

Metrics – Fourier Density

• Fourier Density (*FD*) is defined as the number of nonzero Fourier coefficients

$$FD(C) = \frac{\|\vec{c}_{\omega}\|_{1}^{2}}{\|\vec{c}_{\omega}\|_{2}^{2}}$$

where \vec{c}_{ω} is a vector of Fourier coefficients, $\|\cdot\|_p$ is the p-Norm

- High FD values \rightarrow sharp transitions
- Low FD values \rightarrow less rough landscape
- Low TV values & high FD values \rightarrow indicator for barren plateaus, narrow gorges

Metrics – Inverse Gradient Standard Deviation

 Inverse Gradient Standard Deviation (IGSD_i) describes the variation of the gradient values from the gradient mean in the *i*-th direction given by

$$IGSD_{i}(C) = \frac{1}{SD\left(\partial_{i}C(\vec{\theta})\right)}$$

with SD is the standard deviation and ∂_i is the derivative of the cost function

- High $IGSD_i$ values \rightarrow flat areas
- Low $IGSD_i$ values \rightarrow high dispersion of values

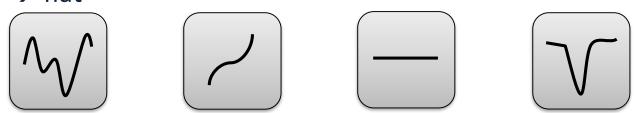
Metrics – Scalar Curvature

• Scalar Curvature (SC) is defined as

$$SC(P,C) = \beta \left(Tr(H_{C}(P))^{2} - Tr(H_{C}^{2}(P)) \right) + 2\beta^{2} \left(\nabla C^{T}(P) \left(H_{C}^{2}(P) - Tr(H_{C}(P)) H_{C}(P) \nabla C(P) \right) \right)$$

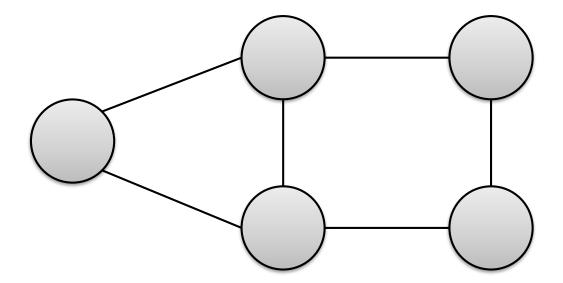
with $\beta = (1 + \|\nabla C(P)\|^2)^{-1}$, *P* point on the landscape, ∇C Gradient of *C* and H_C is the Hessian of *C*

- $SC(P,C) > 0 \rightarrow \text{local optimum}$
- $SC(P,C) < 0 \rightarrow$ saddle point
- $SC(P,C) = 0 \rightarrow \text{flat}$



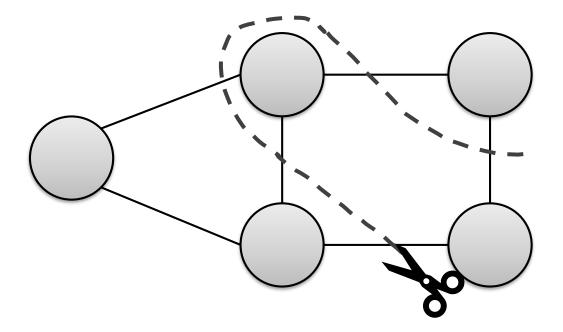
Use Case – Solving the Maximum Cut Problem

The maximum cut problem is to partition the node set of a graph into two sets such that the number of edges between nodes of the different sets is maximal



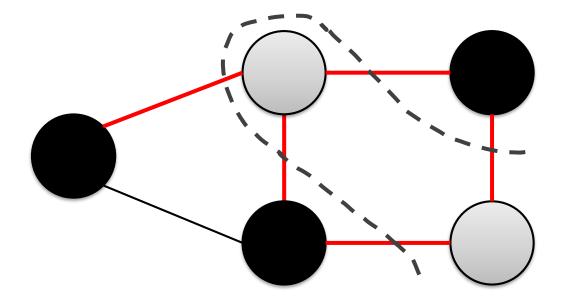
Use Case – Solving the Maximum Cut Problem

The maximum cut problem is to partition the node set of a graph into two sets such that the number of edges between nodes of the different sets is maximal

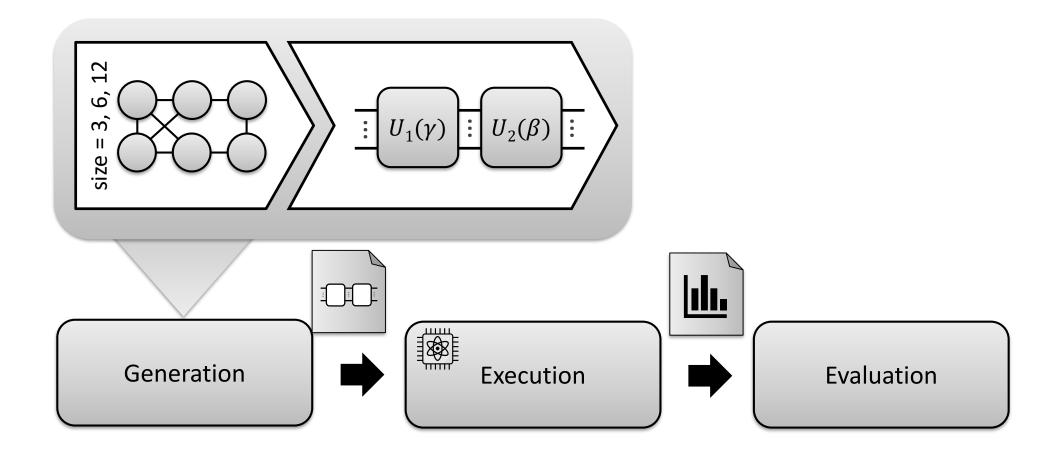


Use Case – Solving the Maximum Cut Problem

The maximum cut problem is to partition the node set of a graph into two sets such that the number of edges between nodes of the different sets is maximal



M Research

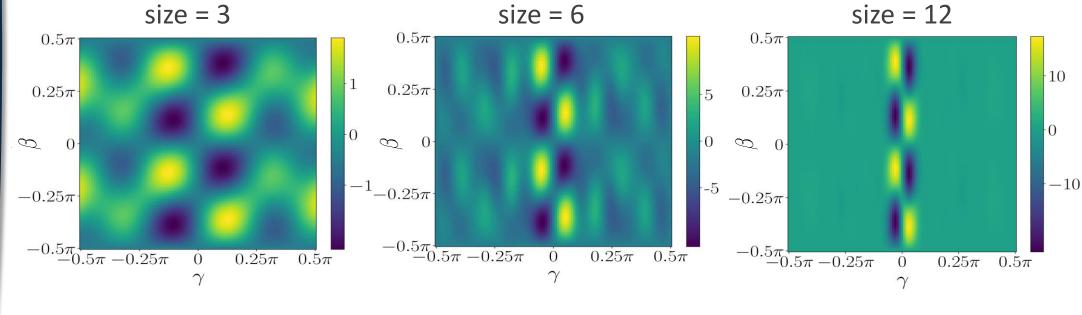


With increasing number of nodes, the margins get flatter and the cost landscape concentrates in the center

 \rightarrow Less local optima

AAS Research

Use Case – Results

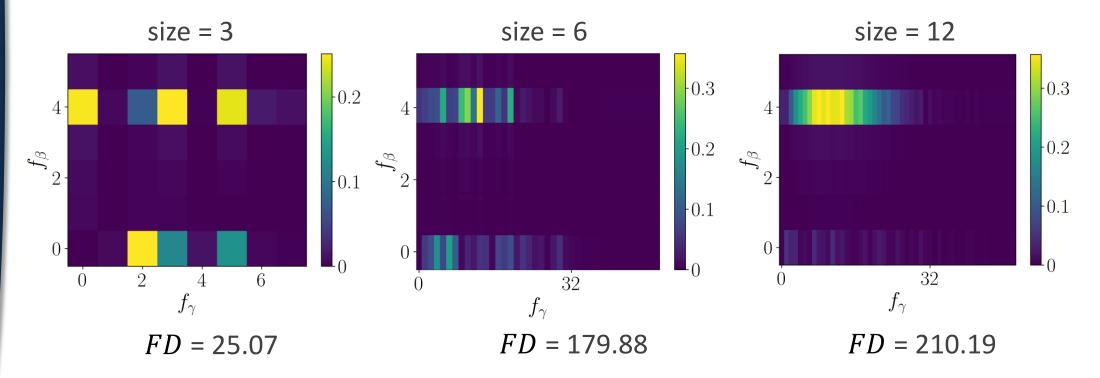


TV = 4.12 TV = 3.80 TV = 1.83

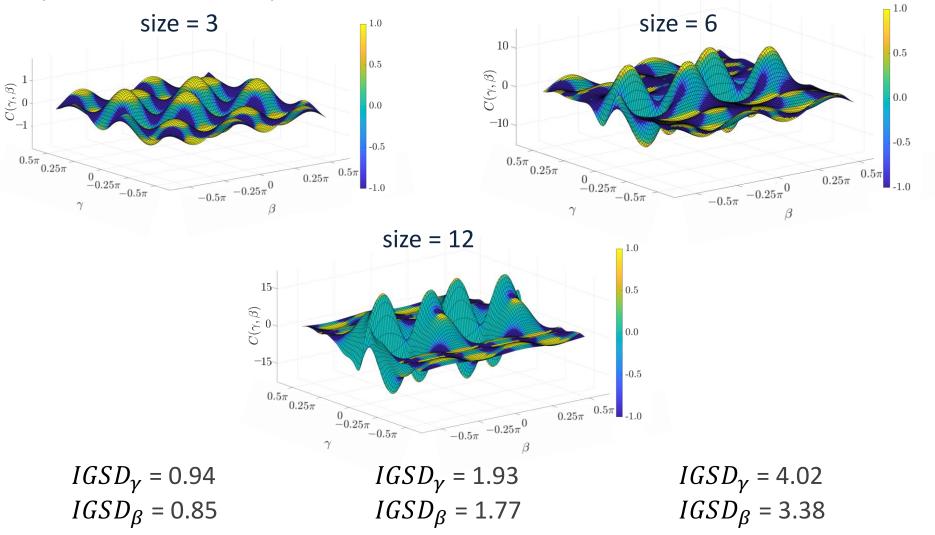
27

Use Case – Results

- The progression of *FD* values from 25.07 to 210.19 indicates a steepening of the cost landscape
 - \rightarrow Cancellation of most of the frequencies



 With increasing number of vertices the landscape gets flatter and the local optima become steeper



Conclusion & Future Work

- Conclusion:
 - Identification of obstacles in the optimization process
 - Overview of different metrics and their interplay
- Future Work:
 - Development of new metrics
 - Include these metrics in the classical optimization process

Thank you for your attention $\ensuremath{\mathfrak{O}}$